A287301 Primes that can be generated by the concatenation in base 3, in descending order, of two consecutive integers read in base 10.
3, 7, 11, 59, 79, 89, 307, 419, 503, 587, 643, 727, 2377, 2459, 3361, 3607, 3853, 4099, 4591, 4673, 4919, 5657, 5821, 5903, 6067, 20983, 21227, 22447, 22691, 23911, 26107, 26839, 28547, 30011, 31231, 31963, 32939, 33427, 34159, 34403, 36599, 37087, 41479, 42943
Offset: 1
Examples
1 and 2 in base 3 are 1 and 2 and concat(2,1) = 21 in base 10 is 7; 2 and 3 in base 3 are 2 and 10 and concat(10,2) = 102 in base 10 is 11.
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; if q=0 then 3 else a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; fi; end: seq(P(i,3),i=0..1000);
-
Mathematica
With[{b = 3}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 150], 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)