cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287303 Primes that can be generated by the concatenation in base 4, in descending order, of two consecutive integers read in base 10.

This page as a plain text file.
%I A287303 #15 Dec 28 2024 12:16:37
%S A287303 19,101,271,1429,1559,1949,2339,2729,3119,3769,4159,17989,18503,19531,
%T A287303 21587,24671,27241,29297,30839,32381,33409,33923,36493,44203,47287,
%U A287303 51913,55511,64763,286999,289049,293149,295199,301349,305449,323899,332099,336199,350549,375149
%N A287303 Primes that can be generated by the concatenation in base 4, in descending order, of two consecutive integers read in base 10.
%H A287303 Harvey P. Dale, <a href="/A287303/b287303.txt">Table of n, a(n) for n = 1..1000</a>
%e A287303 3 and 4 in base 4 are 3 and 10 and concat(10,3) = 103 in base 10 is 19;
%e A287303 5 and 6 in base 4 are 11 and 12 and concat(12,11) = 1211 in base 10 are 101.
%p A287303 with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,4),i=1..1000);
%t A287303 With[{b = 4}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 370], 2, 1]], PrimeQ]] (* _Michael De Vlieger_, May 23 2017 *)
%t A287303 Select[Table[FromDigits[Join[IntegerDigits[n+1,4],IntegerDigits[n,4]],4],{n,1000}],PrimeQ] (* _Harvey P. Dale_, Dec 28 2024 *)
%Y A287303 Cf. A000040, A052089.
%K A287303 nonn,base,easy
%O A287303 1,1
%A A287303 _Paolo P. Lava_, May 23 2017