A287305 Primes that can be generated by the concatenation in base 5, in descending order, of two consecutive integers read in base 10.
5, 11, 17, 23, 29, 181, 233, 311, 337, 389, 467, 571, 3527, 3779, 4157, 4283, 4409, 4787, 5039, 5417, 5669, 6047, 6173, 6299, 6551, 6803, 7307, 7433, 7559, 7937, 8693, 8819, 9323, 10079, 10331, 10457, 10709, 11087, 11213, 11717, 11969, 12347, 12473, 13103, 13229
Offset: 1
Examples
1 and 2 in base 5 are 1 and 2 and concat(2,1) = 21 in base 10 is 11; 6 and 7 in base 5 are 11 and 12 and concat(1211) = 1211 in base 10 is 181.
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; if q=0 then 5 else a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; fi; end: seq(P(i,5),i=0..1000);
-
Mathematica
With[{b = 5}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 108], 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)