A287308 Primes that can be generated by the concatenation in base 7, in ascending order, of two consecutive integers read in base 10.
17, 41, 401, 601, 701, 751, 1051, 1151, 1201, 1301, 1451, 1601, 1801, 1901, 1951, 2251, 2351, 18233, 19609, 20297, 20641, 21673, 25457, 25801, 26489, 26833, 31649, 33713, 34057, 35089, 36809, 38873, 39217, 41281, 41969, 46441, 47129, 49193, 49537, 51257, 52289
Offset: 1
Examples
2 and 3 in base 7 are 2 and 3 and concat(2,3) = 23 in base 10 is 17; 8 and 9 in base 7 are 11 and 12 and concat(11,12) = 1112 in base 10 is 401.
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,7),i=1..1000);
-
Mathematica
With[{b = 7}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 160, 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)