A287309 Primes that can be generated by the concatenation in base 7, in descending order, of two consecutive integers read in base 10.
7, 23, 31, 47, 449, 499, 599, 1049, 1249, 1399, 1499, 1549, 1699, 1949, 1999, 2099, 2399, 18919, 20639, 20983, 24767, 25111, 25799, 29927, 30271, 31991, 33023, 38183, 40591, 45751, 46439, 48847, 51599, 52631, 57791, 59167, 60887, 61231, 64327, 66047, 67079, 68111
Offset: 1
Examples
2 and 3 in base 7 are 2 and 3 and concat(3,2) = 32 in base 10 is 23; 8 and 9 in base 7 are 11 and 12 and concat(12,11) = 1211 in base 10 is 449.
Programs
-
Maple
with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; if q=0 then 7 else a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; fi; end: seq(P(i,7),i=0..1000);
-
Mathematica
With[{b = 7}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Reverse /@ Partition[Range[0, 200], 2, 1]], PrimeQ]] (* Michael De Vlieger, May 23 2017 *)