cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287310 Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.

This page as a plain text file.
%I A287310 #21 Jun 17 2021 04:44:47
%S A287310 19,37,521,911,1171,1301,1951,2081,2341,2731,2861,3121,3251,3511,
%T A287310 32833,35911,37963,43093,44119,46171,53353,56431,57457,59509,61561,
%U A287310 68743,71821,77977,85159,87211,88237,90289,95419,99523,100549,114913,117991,123121,124147,126199
%N A287310 Primes that can be generated by the concatenation in base 8, in ascending order, of two consecutive integers read in base 10.
%C A287310 Primes of the form (1+8^k) m + 1 where m+1 < 8^k < 8(m+1). - _Robert Israel_, May 24 2017
%H A287310 Robert Israel, <a href="/A287310/b287310.txt">Table of n, a(n) for n = 1..10000</a>
%e A287310 2 and 3 in base 8 are 2_8 and 3_8, and concat(2,3) = 23_8 in base 10 is 19;
%e A287310 8 and 9 in base 8 are 10_8 and 11_8 and concat(10,11) = 1011_8 in base 10 is 521.
%p A287310 with(numtheory): P:= proc(q,h) local a,b,c,d,k,n; a:=convert(q+1,base,h); b:=convert(q,base,h); c:=[op(a),op(b)]; d:=0; for k from nops(c) by -1 to 1 do d:=h*d+c[k]; od; if isprime(d) then d; fi; end: seq(P(i,8),i=1..1000);
%t A287310 With[{b = 8}, Select[Map[FromDigits[Flatten@ IntegerDigits[#, b], b] &, Partition[Range@ 250, 2, 1]], PrimeQ]] (* _Michael De Vlieger_, May 25 2017 *)
%Y A287310 Cf. A000040, A030458.
%K A287310 nonn,base,easy
%O A287310 1,1
%A A287310 _Paolo P. Lava_, May 24 2017