cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287314 Triangle read by rows, the coefficients of the polynomials generating the columns of A287316.

This page as a plain text file.
%I A287314 #17 Jan 25 2021 20:15:50
%S A287314 1,0,1,0,-1,2,0,4,-9,6,0,-33,82,-72,24,0,456,-1225,1250,-600,120,0,
%T A287314 -9460,27041,-30600,17700,-5400,720,0,274800,-826336,1011017,-661500,
%U A287314 249900,-52920,5040,0,-10643745,33391954,-43471624,31149496,-13524000,3622080,-564480,40320
%N A287314 Triangle read by rows, the coefficients of the polynomials generating the columns of A287316.
%C A287314 The zeta polynomials for the poset P_n of ordered pairs (S,T) where S,T are subsets of [n] with |S| = |T| ordered component-wise by inclusion. - _Geoffrey Critzer_, Jan 22 2021
%F A287314 Sum_{k=0..n} abs(T(n,k)) = A000275(n) = A212855_row(2).
%e A287314 Triangle starts:
%e A287314 [0] 1
%e A287314 [1] 0,      1
%e A287314 [2] 0,     -1,       2
%e A287314 [3] 0,      4,      -9,       6
%e A287314 [4] 0,    -33,      82,     -72,      24
%e A287314 [5] 0,    456,   -1225,    1250,    -600,    120
%e A287314 [6] 0,  -9460,   27041,  -30600,   17700,  -5400,    720
%e A287314 [7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040
%e A287314 ...
%e A287314 For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n).
%p A287314 A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity);
%p A287314 series(%^x, z=0, n+1): n!^2*coeff(%,z,n); seq(coeff(%,x,k), k=0..n) end:
%p A287314 for n from 0 to 8 do print(A287314_row(n)) od;
%p A287314 A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity);
%p A287314 series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end:
%p A287314 for n from 0 to 7 do A287314_poly(n) od;
%t A287314 nn = 10; e[x_] := Sum[x^n/n!^2, {n, 0, nn}];
%t A287314 f[list_] := CoefficientList[InterpolatingPolynomial[Table[{i, list[[i]]}, {i, 1, nn}], m], m];Drop[Map[f,Transpose[Table[Table[n!^2, {n, 0, nn}] CoefficientList[
%t A287314 Series[e[x]^k, {x, 0, nn}], x], {k, 1, nn}]]], -1] // Grid (* _Geoffrey Critzer_, Jan 22 2021 *)
%Y A287314 Cf. A287316, A000384 (p2), A169711 (p3), A169712 (p4), A169713 (p5).
%Y A287314 Cf. A000275(n), A212855.
%K A287314 sign,tabl
%O A287314 0,6
%A A287314 _Peter Luschny_, May 27 2017