This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287314 #17 Jan 25 2021 20:15:50 %S A287314 1,0,1,0,-1,2,0,4,-9,6,0,-33,82,-72,24,0,456,-1225,1250,-600,120,0, %T A287314 -9460,27041,-30600,17700,-5400,720,0,274800,-826336,1011017,-661500, %U A287314 249900,-52920,5040,0,-10643745,33391954,-43471624,31149496,-13524000,3622080,-564480,40320 %N A287314 Triangle read by rows, the coefficients of the polynomials generating the columns of A287316. %C A287314 The zeta polynomials for the poset P_n of ordered pairs (S,T) where S,T are subsets of [n] with |S| = |T| ordered component-wise by inclusion. - _Geoffrey Critzer_, Jan 22 2021 %F A287314 Sum_{k=0..n} abs(T(n,k)) = A000275(n) = A212855_row(2). %e A287314 Triangle starts: %e A287314 [0] 1 %e A287314 [1] 0, 1 %e A287314 [2] 0, -1, 2 %e A287314 [3] 0, 4, -9, 6 %e A287314 [4] 0, -33, 82, -72, 24 %e A287314 [5] 0, 456, -1225, 1250, -600, 120 %e A287314 [6] 0, -9460, 27041, -30600, 17700, -5400, 720 %e A287314 [7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040 %e A287314 ... %e A287314 For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n). %p A287314 A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity); %p A287314 series(%^x, z=0, n+1): n!^2*coeff(%,z,n); seq(coeff(%,x,k), k=0..n) end: %p A287314 for n from 0 to 8 do print(A287314_row(n)) od; %p A287314 A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity); %p A287314 series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end: %p A287314 for n from 0 to 7 do A287314_poly(n) od; %t A287314 nn = 10; e[x_] := Sum[x^n/n!^2, {n, 0, nn}]; %t A287314 f[list_] := CoefficientList[InterpolatingPolynomial[Table[{i, list[[i]]}, {i, 1, nn}], m], m];Drop[Map[f,Transpose[Table[Table[n!^2, {n, 0, nn}] CoefficientList[ %t A287314 Series[e[x]^k, {x, 0, nn}], x], {k, 1, nn}]]], -1] // Grid (* _Geoffrey Critzer_, Jan 22 2021 *) %Y A287314 Cf. A287316, A000384 (p2), A169711 (p3), A169712 (p4), A169713 (p5). %Y A287314 Cf. A000275(n), A212855. %K A287314 sign,tabl %O A287314 0,6 %A A287314 _Peter Luschny_, May 27 2017