This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287315 #13 Jan 10 2018 20:33:26 %S A287315 1,0,1,0,1,3,0,1,16,19,0,1,65,299,211,0,1,246,3156,7346,3651,0,1,917, %T A287315 28722,160322,237517,90921,0,1,3424,245407,2864912,9302567,9903776, %U A287315 3081513,0,1,12861,2041965,46261609,288196659,632274183,520507423,136407699 %N A287315 Triangle read by rows, (Sum_{k=0..n} T[n,k]*x^k) / (1-x)^(n+1) are generating functions of the columns of A287316. %F A287315 Sum_{k=0..n} T(n,k) = A001044(n). %e A287315 Triangle starts: %e A287315 0: [1] %e A287315 1: [0, 1] %e A287315 2: [0, 1, 3] %e A287315 3: [0, 1, 16, 19] %e A287315 4: [0, 1, 65, 299, 211] %e A287315 5: [0, 1, 246, 3156, 7346, 3651] %e A287315 6: [0, 1, 917, 28722, 160322, 237517, 90921] %e A287315 7: [0, 1, 3424, 245407, 2864912, 9302567, 9903776, 3081513] %e A287315 ... %e A287315 Let q4(x) = (x + 65*x^2 + 299*x^3 + 211*x^4) / (1-x)^5 then the coefficients of the series expansion of q4 give A169712, which is column 4 of A287316. %p A287315 Delta := proc(a, n) local del, A, u; %p A287315 A := [seq(a(j), j=0..n+1)]; del := (a, k) -> `if`(k=0, a(0), a(k)-a(k-1)); %p A287315 for u from 0 to n do A := [seq(del(k -> A[k+1], j), j=0..n)] od end: %p A287315 A287315_row := n -> Delta(A287314_poly(n), n): %p A287315 for n from 0 to 7 do A287315_row(n) od; %p A287315 A287315_eulerian := (n,x) -> add(A287315_row(n)[k+1]*x^k,k=0..n)/(1-x)^(n+1): %p A287315 for n from 0 to 4 do A287315_eulerian(n,x) od; %Y A287315 T(n,n) = A000275(n). %Y A287315 Cf. A192721 (variant), A001044, A287314, A287316. %K A287315 nonn,tabl %O A287315 0,6 %A A287315 _Peter Luschny_, May 29 2017