cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287318 Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0

Views

Author

Peter Luschny, May 23 2017

Keywords

Examples

			Arrays start:
  k\n| 0   1    2      3        4          5           6
  ---|---------------------------------------------------------
  k=0| 1,  0,   0,     0,       0,         0,            0, ... A000007
  k=1| 1,  2,   6,    20,      70,       252,          924, ... A000984
  k=2| 1,  4,  36,   400,    4900,     63504,       853776, ... A002894
  k=3| 1,  6,  90,  1860,   44730,   1172556,     32496156, ... A002896
  k=4| 1,  8, 168,  5120,  190120,   7939008,    357713664, ... A039699
  k=5| 1, 10, 270, 10900,  551950,  32232060,   2070891900, ... A287317
  k=6| 1, 12, 396, 19920, 1281420,  96807312,   8175770064, ... A356258
  k=7| 1, 14, 546, 32900, 2570050, 238935564,  25142196156, ...
  k=8| 1, 16, 720, 50560, 4649680, 514031616,  64941883776, ...
  k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
		

Crossrefs

Rows: A000007 (k=0), A000984 (k=1), A002894 (k=2), A002896 (k=3), A039699 (k=4), A287317 (k=5), A356258 (k=6).
Columns: A005843 (n=1), A152746 (n=2), 20*A169711 (n=3), 70*A169712 (n=4), 252*A169713 (n=5).
Main diagonal gives A303503.
Cf. A287316.

Programs

  • Maple
    A287318_row := proc(k, len) local b, ser;
    b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len);
    seq((2*i)!*coeff(ser,x,i), i=0..len-1) end:
    for k from 0 to 6 do A287318_row(k, 9) od;
  • Mathematica
    Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]

Formula

A(n,k) = A287316(n,k) * binomial(2*n,n).