A287318 Square array A(n,k) = (2*n)! [x^n] BesselI(0, 2*sqrt(x))^k read by antidiagonals.
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 36, 20, 0, 1, 8, 90, 400, 70, 0, 1, 10, 168, 1860, 4900, 252, 0, 1, 12, 270, 5120, 44730, 63504, 924, 0, 1, 14, 396, 10900, 190120, 1172556, 853776, 3432, 0, 1, 16, 546, 19920, 551950, 7939008, 32496156, 11778624, 12870, 0
Offset: 0
Examples
Arrays start: k\n| 0 1 2 3 4 5 6 ---|--------------------------------------------------------- k=0| 1, 0, 0, 0, 0, 0, 0, ... A000007 k=1| 1, 2, 6, 20, 70, 252, 924, ... A000984 k=2| 1, 4, 36, 400, 4900, 63504, 853776, ... A002894 k=3| 1, 6, 90, 1860, 44730, 1172556, 32496156, ... A002896 k=4| 1, 8, 168, 5120, 190120, 7939008, 357713664, ... A039699 k=5| 1, 10, 270, 10900, 551950, 32232060, 2070891900, ... A287317 k=6| 1, 12, 396, 19920, 1281420, 96807312, 8175770064, ... A356258 k=7| 1, 14, 546, 32900, 2570050, 238935564, 25142196156, ... k=8| 1, 16, 720, 50560, 4649680, 514031616, 64941883776, ... k=9| 1, 18, 918, 73620, 7792470, 999283068, 147563170524, ...
Links
- Nikolai Beluhov, Powers of 2 in High-Dimensional Lattice Walks, arXiv:2506.12789 [math.CO], 2025. See p. 19.
Crossrefs
Programs
-
Maple
A287318_row := proc(k, len) local b, ser; b := k -> BesselI(0, 2*sqrt(x))^k: ser := series(b(k), x, len); seq((2*i)!*coeff(ser,x,i), i=0..len-1) end: for k from 0 to 6 do A287318_row(k, 9) od;
-
Mathematica
Table[Table[SeriesCoefficient[BesselI[0, 2 Sqrt[x]]^k, {x, 0, n}] (2 n)!, {n, 0, 6}], {k, 0, 6}]
Formula
A(n,k) = A287316(n,k) * binomial(2*n,n).