A287352 Irregular triangle T(n,k) = A112798(n,1) followed by first differences of A112798(n).
0, 1, 2, 1, 0, 3, 1, 1, 4, 1, 0, 0, 2, 0, 1, 2, 5, 1, 0, 1, 6, 1, 3, 2, 1, 1, 0, 0, 0, 7, 1, 1, 0, 8, 1, 0, 2, 2, 2, 1, 4, 9, 1, 0, 0, 1, 3, 0, 1, 5, 2, 0, 0, 1, 0, 3, 10, 1, 1, 1, 11, 1, 0, 0, 0, 0, 2, 3, 1, 6, 3, 1, 1, 0, 1, 0, 12, 1, 7, 2, 4, 1, 0, 0, 2, 13
Offset: 1
Examples
a(1) = {0} by convention. a(2) = {pi(2)} = {1}. a(4) = {pi(2), pi(2) - pi(2)}, = {1, 0} since 4 = 2 * 2. a(6) = {pi(2), pi(3) - pi(2)} = {1, 1} since 6 = 2 * 3. a(12) = {pi(2), pi(2) - pi(2), pi(3) - pi(2) - pi(2)} = {1, 0, 1}, since 12 = 2 * 2 * 3. The triangle starts: 1: 0; 2: 1; 3: 2; 4: 1, 0; 5: 3; 6: 1, 1; 7: 4; 8: 1, 0, 0; 9: 2, 0; 10: 1, 2; 11: 5; 12: 1, 0, 1; 13: 6; 14: 1, 3; 15: 2, 1; 16: 1, 0, 0, 0; 17: 7; 18: 1, 1, 0; 19: 8; 20: 1, 0, 2; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..15568 (rows 1 <= n <= 5000).
Programs
-
Mathematica
Table[Prepend[Differences@ #, First@ #] & Flatten[FactorInteger[n] /. {p_, e_} /; p > 0 :> ConstantArray[PrimePi@ p, e]], {n, 41}] // Flatten (* Michael De Vlieger, May 23 2017 *)
Comments