A287381 a(n) = a(n-1) + 2*a(n-2) - a(n-3), where a(0) = 2, a(1) = 4, a(2) = 7.
2, 4, 7, 13, 23, 42, 75, 136, 244, 441, 793, 1431, 2576, 4645, 8366, 15080, 27167, 48961, 88215, 158970, 286439, 516164, 930072, 1675961, 3019941, 5441791, 9805712, 17669353, 31838986, 57371980, 103380599, 186285573, 335674791, 604865338, 1089929347
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..2000
- Index entries for linear recurrences with constant coefficients, signature (1, 2, -1).
Programs
-
Mathematica
LinearRecurrence[{1, 2, -1}, {2, 4, 7}, 40]
Formula
a(n) = a(n-1) + 2*a(n-2) - a(n-3), where a(0) = 2, a(1) = 4, a(2) = 7.
G.f.: (2 + 2*x - x^2)/(1 - x - 2*x^2 + x^3).
Comments