This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287391 #16 Oct 13 2018 12:33:59 %S A287391 1,169,289,323,361,391,437,493,527,529,551,589,629,667,697,703,713, %T A287391 731,779,799,817,841,851,893,899,901,943,961,989,1003,1007,1037,1073, %U A287391 1081,1121,1139,1147,1159,1189,1207,1219,1241,1247,1271,1273,1333,1343,1349,1357,1363,1369,1387,1403,1411 %N A287391 Nonprimes k that are a totative of more than one primorial p_n# = A002110(n). %C A287391 From _Michael De Vlieger_, May 24 2017; corrected and edited by _M. F. Hasler_, Oct 04 2018: (Start) %C A287391 Let p_n# = A002110(n). This sequence lists 1 and composite numbers p_n# < k < p_(n+1)# for all positive n such that least_prime_factor(k) > p_(n+2). %C A287391 Subset of A285784. %C A287391 If considered as an irregular number triangle T(n,k), row lengths n < A048863(n). %C A287391 (End) %H A287391 M. F. Hasler, <a href="/A287391/b287391.txt">Table of n, a(n) for n = 1..1000</a> %F A287391 For 2 < n <= 108, a(n) = A008367(n-2); for 109 <= n < 120, a(n) = A008367(n). - _M. F. Hasler_, Oct 04 2018 %e A287391 From _Michael De Vlieger_, May 24 2017: (Start) %e A287391 a(1) = 1 since 1 is coprime to all numbers. %e A287391 169 is in the sequence since it is coprime to p_4# = 210 and p_5# = 2310 yet less than both, however prime(6) = 13 divides 169 thus it is not a totative of p_6# or any larger primorial. (End) %t A287391 MapIndexed[Select[Range @@ #1, Function[k, Function[f, And[If[First@ #2 == 1, k == 1 || Total[f[[All, -1]]] > 1, Total[f[[All, -1]]] > 1], CoprimeQ[Last@ #1, k], f[[1, 1]] != Prime[First@ #2 + 1]]]@ FactorInteger[k]]] &, Partition[FoldList[#1 #2 &, 1, Prime@ Range@ 5], 2, 1]] // Flatten (* _Michael De Vlieger_, May 24 2017 *) %o A287391 (PARI) is(n,f=if(n>1,factor(n)[,1][1],4),P=1)={n!=f&&forprime(p=2,precprime(f-1)-1,n%p||return;(P*=p)>n&&return(1))} \\ _M. F. Hasler_, Oct 04 2018 %Y A287391 Cf. A002110, A048863, A285784. %K A287391 nonn %O A287391 1,2 %A A287391 _Jamie Morken_, May 24 2017 %E A287391 Edited by _Michael De Vlieger_, May 24 2017