This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287393 #36 Mar 04 2024 02:53:29 %S A287393 0,2,4,4,4,4,4,6,8,8,8,8,8,10,12,12,12,12,12,14,16,16,16,16,16,18,20, %T A287393 20,20,20,20,22,24,24,24,24,24,26,28,28,28,28,28,30,32,32,32,32,32,34, %U A287393 36,36,36,36,36,38,40,40,40,40,40,42,44,44,44,44,44,46 %N A287393 Domination number for knight graph on a 2 X n board. %C A287393 Minimum number of knights required to dominate a 2 X n board. %H A287393 Colin Barker, <a href="/A287393/b287393.txt">Table of n, a(n) for n = 0..1000</a> %H A287393 Wikipedia, <a href="https://en.wikipedia.org/wiki/Knight_(chess)">Knight (chess)</a> %H A287393 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-2,2,-1). %F A287393 a(n) = 2*(floor((n+4)/6) + floor((n+5)/6)). %F A287393 From _Colin Barker_, May 26 2017: (Start) %F A287393 G.f.: 2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)). %F A287393 a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - 2*a(n-4) + 2*a(n-5) - a(n-6) for n>5. %F A287393 (End) %F A287393 a(n) = 2*A099480(n-1). %e A287393 For n=3 we need a(3)=4 knights to dominate a 2 X 3 board. %t A287393 Table[2*(Floor[(i+4)/6]+Floor[(i+5)/6]), {i, 0, 67}] %t A287393 LinearRecurrence[{2,-2,2,-2,2,-1},{0,2,4,4,4,4},70] (* _Harvey P. Dale_, Jul 07 2020 *) %o A287393 (Python) [2*((i+4)//6+(i+5)//6) for i in range(68)] %o A287393 (PARI) concat(0, Vec(2*x / ((1 - x)^2*(1 - x + x^2)*(1 + x + x^2)) + O(x^100))) \\ _Colin Barker_, May 27 2017 %Y A287393 Cf. A099480, A287394. %K A287393 nonn,easy %O A287393 0,2 %A A287393 _David Nacin_, May 24 2017