A287394 Domination number for camel's graph on a 2 X n board.
0, 2, 4, 6, 6, 6, 6, 6, 6, 6, 8, 10, 12, 12, 12, 12, 12, 12, 12, 14, 16, 18, 18, 18, 18, 18, 18, 18, 20, 22, 24, 24, 24, 24, 24, 24, 24, 26, 28, 30, 30, 30, 30, 30, 30, 30, 32, 34, 36, 36, 36, 36, 36, 36, 36, 38, 40, 42, 42, 42, 42, 42, 42, 42, 44, 46, 48, 48
Offset: 0
Examples
For n=4 we need a(4)=6 camels to dominate a 2 X 4 board.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Wikipedia, Camel (chess)
- Index entries for linear recurrences with constant coefficients, signature (2,-1,-1,2,-1,-1,2,-1).
Programs
-
Mathematica
Table[2*(Floor[(i+6)/9]+Floor[(i+7)/9]+Floor[(i+8)/9]), {i, 0, 67}]
-
PARI
concat(0, Vec(2*x / ((1 - x)^2*(1 + x^3 + x^6)) + O(x^100))) \\ Colin Barker, May 27 2017
-
Python
[2*(int((i+6)/9)+int((i+7)/9)+int((i+8)/9)) for i in range(68)]
Formula
a(n) = 2*(floor((n+6)/9) + floor((n+7)/9) + floor((n+8)/9)).
G.f.: 2*x / ((1 - x)^2*(1 + x^3 + x^6)). - Colin Barker, May 26 2017
a(n) = 2*A093390(n+6).
Comments