A287434 Largest denominator used in the Egyptian fraction representation of 1-1/(2n+1) by the odd greedy expansion algorithm, without repeats.
45, 24885, 315, 45, 340725, 196365, 15, 10965, 196365, 10465, 1652115781968795, 340725, 25245, 3976914451825623169001741646052688658398236092769201887156089117865, 15345, 13695, 6232413355673505, 79365
Offset: 1
Keywords
Examples
For n = 2, 1-1/(2n+1) = 4/5 = 1/3 + 1/5 + 1/7 + 1/9 + 1/79 + 1/24885, thus a(2) = 24885.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..269
- Kevin Brown, Odd-Greedy Unit Fraction Expansions.
- Wikipedia, Odd greedy expansion.
Programs
-
Mathematica
odd[n_]:=If[OddQ[n],n,n+1];a={};For[n=0,n<100,n++;dlast=0;k=2n/(2n+1);s1=0; While[k>0,s2=odd[Ceiling[1/k]]; If[s2==s1,s2+=2]; dlast=s2; k=k-1/s2; s1=s2];a=AppendTo[a,dlast]];a
Comments