cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287468 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 276", based on the 5-celled von Neumann neighborhood.

This page as a plain text file.
%I A287468 #15 Feb 16 2025 08:33:46
%S A287468 1,0,11,0,111,0,1111,0,11111,0,111111,0,1111111,0,11111111,0,
%T A287468 111111111,0,1111111111,0,11111111111,0,111111111111,0,1111111111111,
%U A287468 0,11111111111111,0,111111111111111,0,1111111111111111,0,11111111111111111,0,111111111111111111
%N A287468 Binary representation of the diagonal from the corner to the origin of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 276", based on the 5-celled von Neumann neighborhood.
%C A287468 Initialized with a single black (ON) cell at stage zero.
%D A287468 S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H A287468 Robert Price, <a href="/A287468/b287468.txt">Table of n, a(n) for n = 0..126</a>
%H A287468 Robert Price, <a href="/A287468/a287468.tmp.txt">Diagrams of first 20 stages</a>
%H A287468 N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H A287468 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H A287468 S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H A287468 Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>
%H A287468 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H A287468 <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H A287468 <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F A287468 From _Colin Barker_, May 29 2017: (Start)
%F A287468 Conjectures:
%F A287468 G.f.: 1 / ((1 - x)*(1 + x)*(1 - 10*x^2)).
%F A287468 a(n) = (10^(n/2+1) - 1) / 9 for n even.
%F A287468 a(n) = 0 for n odd.
%F A287468 a(n) = 11*a(n-2) - 10*a(n-4) for n>3.
%F A287468 (End)
%t A287468 CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];
%t A287468 code = 276; stages = 128;
%t A287468 rule = IntegerDigits[code, 2, 10];
%t A287468 g = 2 * stages + 1; (* Maximum size of grid *)
%t A287468 a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)
%t A287468 ca = a;
%t A287468 ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
%t A287468 PrependTo[ca, a];
%t A287468 (* Trim full grid to reflect growth by one cell at each stage *)
%t A287468 k = (Length[ca[[1]]] + 1)/2;
%t A287468 ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
%t A287468 Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]
%Y A287468 Cf. A287469, A077896, A287470.
%K A287468 nonn,easy
%O A287468 0,3
%A A287468 _Robert Price_, May 25 2017