This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287479 #46 Jul 15 2024 21:13:51 %S A287479 0,1,1,-3,-3,9,9,-27,-27,81,81,-243,-243,729,729,-2187,-2187,6561, %T A287479 6561,-19683,-19683,59049,59049,-177147,-177147,531441,531441, %U A287479 -1594323,-1594323,4782969,4782969,-14348907,-14348907,43046721,43046721,-129140163,-129140163,387420489 %N A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2). %C A287479 This is the inverse binomial transform of A157241. %C A287479 Successive differences of A157241 begin: %C A287479 0, 1, 3, 3, -5, -21, -21, 43, 171, 171, ... = A157241 %C A287479 1, 2, 0, -8, -16, 0, 64, 128, 0, -512, ... = A088138 %C A287479 1, -2, -8, -8, 16, 64, 64, -128, -512, -512, ... = A138230 %C A287479 -3, -6, 0, 24, 48, 0, -192, -384, 0, 1536, ... %C A287479 -3, 6, 24, 24, -48, -192, -192, 384, 1536, 1536, ... %C A287479 9, 18, 0, -72, -144, 0, 576, 1152, 0, -4608, ... %C A287479 9, -18, -72 -72, 144, 576, 576, -1152, -4608, -4608, ... %C A287479 ... %C A287479 a(n) is the n-th term of the first column. %C A287479 Successive differences of a(n) begin: %C A287479 0, 1, 1, -3, -3, 9, 9, -27, -27, 81, ... %C A287479 1, 0, -4, 0, 12, 0, -36, 0, 108, 0, ... %C A287479 -1, -4, 4, 12, -12, -36, 36, 108, -108, -324, ... %C A287479 -3, 8, 8, -24, -24, 72, 72, -216, -216, 648, ... %C A287479 11, 0, -32, 0, 96, 0, -288, 0, 864, 0, ... %C A287479 -11, -32, 32, 96, -96, -288, 288, 864, -864, -2592, ... %C A287479 -21, 64, 64, -192, -192, 576, 576, -1728, -1728, 5184, ... %C A287479 85, 0, -256, 0, 768, 0, -2304, 0, 6912, 0, ... %C A287479 ... %C A287479 First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717. %C A287479 a(n) = A128019(n-2) for n > 2. - _Georg Fischer_, Oct 23 2018 %H A287479 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0, -3). %F A287479 a(n) = -3*a(n-2) for n > 2. %F A287479 E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - _Stefano Spezia_, Jul 15 2024 %t A287479 Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]] %t A287479 (* or, computation from b = A157241 : *) %t A287479 b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]] %o A287479 (PARI) concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ _Felix Fröhlich_, Oct 23 2018 %Y A287479 Cf. A001045, A082311, A088138, A104538, A108411, A128019, A137717, A138230, A140429, A157241. %K A287479 sign,easy %O A287479 0,4 %A A287479 _Jean-François Alcover_ and _Paul Curtz_, Jul 19 2017