cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2).

This page as a plain text file.
%I A287479 #46 Jul 15 2024 21:13:51
%S A287479 0,1,1,-3,-3,9,9,-27,-27,81,81,-243,-243,729,729,-2187,-2187,6561,
%T A287479 6561,-19683,-19683,59049,59049,-177147,-177147,531441,531441,
%U A287479 -1594323,-1594323,4782969,4782969,-14348907,-14348907,43046721,43046721,-129140163,-129140163,387420489
%N A287479 Expansion of g.f. (x + x^2)/(1 + 3*x^2).
%C A287479 This is the inverse binomial transform of A157241.
%C A287479 Successive differences of A157241 begin:
%C A287479 0,   1,   3,   3,   -5,  -21,  -21,    43,   171,   171, ... = A157241
%C A287479 1,   2,   0,  -8,  -16,    0,   64,   128,     0,  -512, ... = A088138
%C A287479 1,  -2,  -8,  -8,   16,   64,   64,  -128,  -512,  -512, ... = A138230
%C A287479 -3, -6,   0,  24,   48,    0, -192,  -384,     0,  1536, ...
%C A287479 -3,  6,  24,  24,  -48, -192, -192,   384,  1536,  1536, ...
%C A287479 9,  18,   0, -72, -144,    0,  576,  1152,     0, -4608, ...
%C A287479 9, -18, -72  -72,  144,  576,  576, -1152, -4608, -4608, ...
%C A287479 ...
%C A287479 a(n) is the n-th term of the first column.
%C A287479 Successive differences of a(n) begin:
%C A287479 0,     1,    1,   -3,   -3,    9,     9,   -27,   -27,    81, ...
%C A287479 1,     0,   -4,    0,   12,    0,   -36,     0,   108,     0, ...
%C A287479 -1,   -4,    4,   12,  -12,  -36,    36,   108,  -108,  -324, ...
%C A287479 -3,    8,    8,  -24,  -24,   72,    72,  -216,  -216,   648, ...
%C A287479 11,    0,  -32,    0,   96,    0,  -288,     0,   864,     0, ...
%C A287479 -11, -32,   32,   96,  -96, -288,   288,   864,  -864, -2592, ...
%C A287479 -21,  64,   64, -192, -192,  576,   576, -1728, -1728,  5184, ...
%C A287479 85,    0, -256,    0,  768,    0, -2304,     0,  6912,     0, ...
%C A287479 ...
%C A287479 First column appears to be a subsequence of Jacobsthal numbers A001045 (the trisection A082311 is missing), second column is A104538, and third column is A137717.
%C A287479 a(n) = A128019(n-2) for n > 2. - _Georg Fischer_, Oct 23 2018
%H A287479 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0, -3).
%F A287479 a(n) = -3*a(n-2) for n > 2.
%F A287479 E.g.f.: (1 - cos(sqrt(3)*x) + sqrt(3)*sin(sqrt(3)*x))/3. - _Stefano Spezia_, Jul 15 2024
%t A287479 Join[{0}, LinearRecurrence[{0, -3}, {1, 1}, 40]]
%t A287479 (* or, computation from b = A157241 : *)
%t A287479 b[n_] := (Switch[Mod[n, 3], 0, (-1)^((n + 3)/3), 1, (-1)^((n + 5)/3), 2, (-1)^((n + 4)/3)*2]*2^n + 1)/3; tb = Table[b[n], {n, 0, 40}]; Table[ Differences[tb, n], {n, 0, 40}][[All, 1]]
%o A287479 (PARI) concat([0], Vec((x + x^2)/(1 + 3*x^2) + O(x^40))) \\ _Felix Fröhlich_, Oct 23 2018
%Y A287479 Cf. A001045, A082311, A088138, A104538, A108411, A128019, A137717, A138230, A140429, A157241.
%K A287479 sign,easy
%O A287479 0,4
%A A287479 _Jean-François Alcover_ and _Paul Curtz_, Jul 19 2017