cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287511 Number of simple connected perfect non-bipartite graphs on n vertices.

This page as a plain text file.
%I A287511 #17 Feb 16 2025 08:33:46
%S A287511 0,0,1,3,15,88,680,7623,126047,3118189,112367111,5736020864
%N A287511 Number of simple connected perfect non-bipartite graphs on n vertices.
%H A287511 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BipartiteGraph.html">Bipartite Graph</a>
%H A287511 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ConnectedGraph.html">Connected Graph</a>
%H A287511 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PerfectGraph.html">Perfect Graph</a>
%H A287511 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleGraph.html">Simple Graph</a>
%F A287511 a(n) = A052433(n) - A005142(n), since all bipartite graphs are perfect. - _Falk Hüffner_, Aug 10 2017
%Y A287511 Cf. A005142, A052433.
%K A287511 nonn,more
%O A287511 1,4
%A A287511 _Eric W. Weisstein_, May 26 2017
%E A287511 a(11)-a(12) from formula by _Falk Hüffner_, Aug 10 2017