This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287532 #45 May 30 2025 09:41:41 %S A287532 1,1,1,1,4,1,1,11,9,1,1,26,50,16,1,1,57,222,150,25,1,1,120,867,1080, %T A287532 355,36,1,1,247,3123,6627,3775,721,49,1,1,502,10660,36552,33502,10626, %U A287532 1316,64,1,1,1013,35064,187000,262570,128758,25676,2220,81,1 %N A287532 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals upwards, where A(n,k) = sum of unimodal products of length n and bound k. %C A287532 A unimodal product of length n and parameter k is a product of positive integers a_1 ... a_m ... a_n where a_1 <= ... <= a_m <= k and k >= a_m >= ... >= a_n; furthermore we consider each choice of m to give a distinct product, unless a_m=k. (See the example.) %F A287532 A(n,k) is the coefficient of x^n in 1/((1-k*x) * (1-(k-1)*x)^2 * ... * (1-x)^2). %F A287532 A(n,k) = Sum_{j=0..n} Stirling2(j+k-1,k-1) * Stirling2(n-j+k,k) for k >= 1. - _Seiichi Manyama_, May 14 2025 %e A287532 A(2,3)=50 because of the products 1*1,1*1,1*1 [m=0,1,2]; 1*2,1*2 [m=1,2]; 1*3; 2*1,2*1 [m=0,1]; 2*2,2*2,2*2 [m=0,1,2]; 2*3; 3*1; 3*2; 3*3; total 50. %e A287532 Square array begins: %e A287532 n\k| 1, 2, 3, 4, 5, 6, ... %e A287532 ---+------------------------------------------ %e A287532 0 | 1, 1, 1, 1, 1, 1, ... %e A287532 1 | 1, 4, 9, 16, 25, 36, ... %e A287532 2 | 1, 11, 50, 150, 355, 721, ... %e A287532 3 | 1, 26, 222, 1080, 3775, 10626, ... %e A287532 4 | 1, 57, 867, 6627, 33502, 128758, ... %e A287532 5 | 1, 120, 3123, 36552, 262570, 1360128, ... %e A287532 ... %t A287532 f[k_]:=Product[1-j x,{j,k}]; A[n_,k_]:=Coefficient[Series[1/f[k]/f[k-1],{x,0,n}],x,n] %o A287532 (PARI) a(n, k) = sum(j=0, n, stirling(j+k-1, k-1, 2)*stirling(n-j+k, k, 2)); \\ _Seiichi Manyama_, May 14 2025 %Y A287532 A(n,n) gives A383883. %Y A287532 Columns k=5..6 give A383892, A383893. %Y A287532 Cf. A000290, A000295, A222993, A223069. %K A287532 nonn,tabl %O A287532 0,5 %A A287532 _Don Knuth_, May 26 2017