This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287548 #34 Aug 31 2022 02:43:42 %S A287548 1,2,1,5,3,2,14,9,7,4,42,28,23,16,10,132,90,76,57,42,24,429,297,255, %T A287548 199,156,108,66,1430,1001,869,695,563,420,304,174,4862,3432,3003,2442, %U A287548 2019,1568,1210,836,504 %N A287548 Triangle read by rows: T(n,k), where each row begins with the Catalan number for n nonintersecting arches and transitions through k generations of eliminating and reducing arch configurations to an end row entry equal to number of semi-meander solutions for n arches. %F A287548 T(n,1) = Catalan Numbers C(n)= A000108(n). %F A287548 Conjectured: %F A287548 T(n,2) = C(n) - C(n-1) = A000245(n-1). %F A287548 T(n,3) = C(n) - C(n-1) - C(n-2) = A067324(n-3). %F A287548 T(n,4) = C(n) - C(n-1) - 2*C(n-2) - C(n-3). %F A287548 T(n,n) = semi-meander solutions = A000682(n-1). %e A287548 Triangle begins: %e A287548 n\k 1 2 3 4 5 6 7 8 %e A287548 1: 1 %e A287548 2: 2 1 %e A287548 3: 5 3 2 %e A287548 4: 14 9 7 4 %e A287548 5: 42 28 23 16 10 %e A287548 6: 132 90 76 57 42 24 %e A287548 7: 429 297 255 199 156 108 66 %e A287548 8: 1430 1001 869 695 563 420 304 174 %e A287548 ... %e A287548 Capital letters (U,D) represent beginning and end of first and last arch. Only 1 UD ends arch sequence in next generation. %e A287548 Reduction of arches: Elimination of arches: %e A287548 (middle D U = new arch U D in the next arch generation) %e A287548 /\ %e A287548 /\ //\\ /\/\/\/\ = UDududUD %e A287548 //\\/\///\\\ = UudDudUuuddD /\ %e A287548 /\ /\ / \ %e A287548 /\//\\//\\ = UDuuddUudD //\/\\ = UududD %e A287548 end %e A287548 For n=3 C(n)=5 nonintersecting arch configurations: %e A287548 UuuddD UududD UudDUD UDUudD UDudUD T(3,1)=5 %e A287548 end end UDUD UDUD UudD T(3,2)=3 %e A287548 UD UD end T(3,3)=2 %Y A287548 Cf. A000108, A000245, A067324, A000682. %K A287548 nonn,tabl,more %O A287548 1,2 %A A287548 _Roger Ford_, May 26 2017