A287581 Largest squarefree odd primitive abundant number with n prime factors.
442365, 13455037365, 1725553747427327895, 977844705701880720314685634538055, 29094181301361888360228876470808927597684302024968488289496445
Offset: 5
Keywords
Examples
a(5) = 442365 = 3 * 5 * 7 * 11 * 383 is the largest squarefree odd primitive abundant number (SOPAN). Here, 3*5*7*11 is the smallest possibility to produce a squarefree odd deficient number with 4 prime factors, and it is the one with the largest possible abundancy, and 383 is the largest prime by which this can be multiplied to yield an abundant number. One can increase 11 up to 19 to get more SOPAN (for a total of 71 + 12 + 3 + 1 = 87 = A287590(5) SOPAN with 5 factors), none of which is larger. One can see that increasing the 3rd prime factor 7 to 11 yields no further possibilities, and therefore also the second and third factor can't be increased. a(6) = 13455037365 = 3 * 5 * 7 * 11 * 389 * 29947, a(7) = 1725553747427327895 = 3 * 5 * 7 * 11 * 389 * 29959 * 128194559, a(8) = 3 * 5 * 7 * 11 * 389 * 29959 * 128194589 * 566684450325179, a(9) = a(8)/gpf(a(8)) * 566684450325197 * 29753376105337343078941364893, a(10) = a(9)/gpf(a(9)) * 29753376105337343078941364947 * 30082232218581187462432471034748868284388270918928732059.
Programs
-
PARI
A287581(n,p=3,P=p,s=2)={forstep(i=n,2,-1,n=max(1\(-1+s/=1+1/p),p+1); P*=p=if(i>2,nextprime(n),precprime(n)));P}
Formula
a(n+1) = (a(n)/p(n))*p'(n)*q(n), where p(n) = gpf(a(n)), p'(n) = nextprime(p(n)+1), q(n) = precprime(1/(2/sigma[-1](a(n)/p(n)*p'(n))-1)), sigma[-1](x) = sigma(x)/x; conjectured to hold for all n >= 5.
Comments