cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287614 Primes of the form (1 + x)^y + (-x)^y for some positive x, y.

Original entry on oeis.org

5, 7, 13, 17, 19, 31, 37, 41, 61, 97, 113, 127, 181, 211, 257, 271, 313, 331, 337, 397, 421, 547, 613, 631, 761, 881, 919, 1013, 1201, 1301, 1657, 1741, 1801, 1861, 1951, 2113, 2269, 2381, 2437, 2521, 2791, 3121, 3169, 3571, 3613, 3697, 4219, 4447, 4513, 4651, 5101, 5167, 5419, 6211
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 27 2017

Keywords

Comments

Conjecture: If x is a positive number and (1 + x)^y + (-x)^y is an odd prime number, then y is other odd prime number or even power of two.
Smallest Mersenne prime (A000668) has n ways to write as (1 + k)^m - k^m for positive k: 3, 7, 127, ...

Examples

			5 (x = 1, y = 2), 7 (1, 3), 13 (2, 2), 17 (1, 4), 19 (2, 3), 31 (1, 5), 37 (3, 3), 41 (4, 2), 61 (3, 4 or 2, 5), 97 (2, 4), 113 (7, 2), 127 (1, 7 or 3, 6), 181 (9, 2), 211 (2, 5), 257 (1, 8), 271 (9, 3).
		

Crossrefs

Programs

  • Mathematica
    mx = 10^4; f[x_, y_] := (1+x)^y + (-x)^y; x=0; Union@ Reap[ While[ f[++x, 2] < mx, y=1; While[(v = f[x, ++y]) < mx, If[PrimeQ@ v, Sow@v]]]][[2, 1]] (* Giovanni Resta, May 31 2017 *)