This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287618 #60 Jul 18 2017 13:30:16 %S A287618 1,2,1,3,3,2,3,3,4,2,4,4,5,5,3,4,4,5,5,6,3,5,5,6,6,7,7,4,5,5,6,6,7,7, %T A287618 8,4,6,6,7,7,8,8,9,9,5,6,6,7,7,8,8,9,9,10,5,7,7,8,8,9,9,10,10,11,11,6, %U A287618 7,7,8,8,9,9,10,10,11,11,12,6,8,8,9,9,10,10,11,11,12,12,13,13,7,8,8,9,9,10,10,11,11,12,12,13,13,14,7 %N A287618 Triangle read by rows: T(j,k) is the number of distinct edge segments in a j X k rectangular grid. %C A287618 This gives the number of edge segments that are distinct with respect to rotation and mirror images. Sequence is arranged so that j <= k (since 2 X 3 and 3 X 2 are equivalent grids), first by increasing j, then by increasing k: a(1) = 1 X 1 = 1, a(2) = 1 X 2 = 2, a(3) = 2 X 2 = 1, a(4) = 1 X 3 = 3. %C A287618 Here j = A002260(n), k = A002024(n), and n = A000217(k-1) + j, then a(n) = if j = k, ceiling(j/2), else ceiling(j/2) + ceiling(k/2). %H A287618 Doug Bell, <a href="/A287618/b287618.txt">Table of n, a(n) for n = 1..11325</a>, Rows n = 1..150, flattened. %e A287618 Triangle begins: %e A287618 1; %e A287618 2, 1; %e A287618 3, 3, 2; %e A287618 3, 3, 4, 2; %e A287618 4, 4, 5, 5, 3; %e A287618 4, 4, 5, 5, 6, 3; %e A287618 5, 5, 6, 6, 7, 7, 4; %e A287618 ... %e A287618 For n = 9, the a(9) = 4 distinct edge segments [A,B,C,D] for a 3 X 4 rectangular grid are: %e A287618 + - - - - + + A B B A + %e A287618 | | C C %e A287618 | | --> D D %e A287618 | | C C %e A287618 + - - - - + + A B B A +. %t A287618 Table[Ceiling[j/2] + Boole[j != k] Ceiling[k/2], {j, 14}, {k, j}] // Flatten (* _Michael De Vlieger_, Jun 09 2017 *) %Y A287618 Cf. A002260, A002024, A000217. %Y A287618 Cf. A287688 (number of distinct edge segment pairs). %K A287618 nonn,tabl,hear %O A287618 1,2 %A A287618 _Doug Bell_, May 28 2017