This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287637 #7 May 31 2017 13:15:51 %S A287637 2,4,3,8,5,9,16,7,2,32,27,4,11,25,64,13,8,81,10,128,17,49,19,16,20, %T A287637 256,23,125,243,32,29,31,40,512,50,121,37,64,41,43,80,1024,729,169,47, %U A287637 343,100,53,625,128,59,61,160,2048,67,289,200,71,73,79,250,256 %N A287637 a(n) = A249125(n)/concatenation of prime factors of A249125(n). %C A287637 The squares of the sequence are, in increasing order: 4, 9, 16, 25, 49, 64, 81, 100, 121, 169, 256, 289, 361, 400, 625, 729, 1024, 4096,... including the squares of the prime numbers. %C A287637 The numbers p^n, p prime and n = 1, 2, 3, 4,... are in the sequence. %C A287637 The twin primes (a(m), a(m+1)) of the sequence are (29, 31), (41, 43), (59, 61), (71, 73), (101, 103), (107, 109), (137, 139),... %C A287637 The numbers whose prime factors are 2 and 5 (A033846) are in the sequence. %e A287637 a(9)=2 because A249125(9) = 50 and the concatenation of the prime factors of 50 is 25. Hence, 50/25 = 2. %p A287637 with(numtheory): %p A287637 for n from 2 to 10000 do: %p A287637 if type(n,prime)=false %p A287637 then %p A287637 x:=factorset(n):n0:=nops(x): %p A287637 d:=sum('length(x[i])', 'i'=1..n0): %p A287637 l:=sum('x[i]*10^sum('length(x[j])', 'j'=i+1..n0)', 'i'=1..n0): %p A287637 z:=n/l: %p A287637 if floor(z)=z %p A287637 then %p A287637 printf(`%d, `,z): %p A287637 else %p A287637 fi: %p A287637 fi: %p A287637 od: %t A287637 cf[n_] := FromDigits@ Flatten[ IntegerDigits /@ First /@ FactorInteger@n]; Reap[ Do[If[ CompositeQ[n] && IntegerQ[rz = n/cf[n]], Sow[rz]], {n, 6400}]][[2, 1]] (* _Giovanni Resta_, May 29 2017 *) %Y A287637 Cf. A033846, A077800, A084317, A249125. %K A287637 nonn,base %O A287637 1,1 %A A287637 _Michel Lagneau_, May 28 2017