cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287638 Odd primes with no other odd primes as prefixes in binary.

This page as a plain text file.
%I A287638 #20 Sep 24 2023 10:23:37
%S A287638 3,5,17,19,37,67,73,131,257,521,523,577,1033,1039,1061,1063,1069,1153,
%T A287638 1163,2053,2069,2081,2083,2089,2113,2129,2131,2137,2141,2143,2333,
%U A287638 4099,4111,4129,4153,4177,4229,4231,4241,4243,4261,4271,4273,4637,4639,4643,4649,4651,4657,4663
%N A287638 Odd primes with no other odd primes as prefixes in binary.
%C A287638 The sum of the reciprocals converges by the Kraft-McMillan inequality.
%C A287638 Odd primes p such that iterating the map A029578 on p reaches 2 without going through a prime. - _Ya-Ping Lu_, Oct 20 2021
%H A287638 Charles R Greathouse IV, <a href="/A287638/b287638.txt">Table of n, a(n) for n = 1..10000</a>
%H A287638 Dan Brumleve, <a href="https://math.stackexchange.com/questions/2288648/does-the-sum-of-reciprocals-of-all-prime-prefix-free-numbers-converge">Does the sum of reciprocals of all prime-prefix-free numbers converge?</a>, Math StackExchange, May 20 2017.
%H A287638 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kraft%E2%80%93McMillan_inequality">Kraft-McMillan inequality</a>
%e A287638 4663 is an odd prime with proper binary prefixes 2331, 1165, 582, 291, 145, 72, 36, 18, 9, 4, 2, 1, and none of these are odd primes.
%t A287638 Select[Prime@ Range[2, 800], Function[w, NoneTrue[Array[FromDigits[w[[1 ;; #]], 2] &, Length[w] - 1], And[PrimeQ[#], # != 2] &]]@ IntegerDigits[#, 2] &] (* _Michael De Vlieger_, Oct 20 2021 *)
%o A287638 (Perl)
%o A287638 sub isp {
%o A287638   my $x = shift;
%o A287638   return 0 if $x < 2;
%o A287638   for my $d (2 .. $x - 1) {
%o A287638     return 0 if $x % $d == 0;
%o A287638   }
%o A287638   return 1;
%o A287638 }
%o A287638 sub rots {
%o A287638   my $x = shift;
%o A287638   my @x;
%o A287638   while ($x > 5) {
%o A287638     $x = int($x / 2);
%o A287638     push @x, $x;
%o A287638   }
%o A287638   @x
%o A287638 }
%o A287638 for my $i (1 .. $ARGV[0] // 8000) {
%o A287638   my @np = grep isp($_), rots($i);
%o A287638   push @z, $i if isp($i) && $i % 2 && @np == 0;
%o A287638 }
%o A287638 print join(", ", @z) . "\n";
%o A287638 (PARI) is(n)=if(!isprime(n) || n<3, return(0)); while(n>3, if(isprime(n>>=1), return(n==2))); 1 \\ _Charles R Greathouse IV_, Jun 12 2017
%Y A287638 Odd prime elements of A287117.
%Y A287638 Cf. A029578.
%K A287638 nonn,easy,base
%O A287638 1,1
%A A287638 _Dan Brumleve_, May 28 2017