This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287640 #25 Jan 06 2022 14:28:26 %S A287640 1,1,1,1,1,4,1,13,1,1,41,9,1,1,131,59,11,1,1,428,344,88,15,1,1,1429, %T A287640 1906,634,146,23,1,1,4861,10345,4389,1231,280,39,1,1,16795,55901, %U A287640 30006,9835,2763,602,71,1,1,58785,303661,205420,77178,25014,6967,1408,135,1 %N A287640 Number T(n,k) of set partitions of [n], where k is minimal such that for all j in [n]: j is member of block b implies b = 1 or at least one of j-1, ..., j-k is member of a block >= b-1; triangle T(n,k), n >= 0, 0 <= k <= max(floor(n/2), n-2), read by rows. %H A287640 Alois P. Heinz, <a href="/A287640/b287640.txt">Rows n = 0..20, flattened</a> %H A287640 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A287640 T(n,k) = A287641(n,k) - A287641(n,k-1) for k>0, T(n,0) = 1. %F A287640 T(n+4,n+1) = A168415(n) for n>0. %e A287640 T(4,0) = 1: 1234. %e A287640 T(4,1) = 13: 123|4, 124|3, 12|34, 12|3|4, 134|2, 13|24, 14|23, 1|234, 1|23|4, 14|2|3, 1|24|3, 1|2|34, 1|2|3|4. %e A287640 T(4,2) = 1: 13|2|4. %e A287640 T(5,2) = 9: 124|3|5, 135|2|4, 13|25|4, 13|2|45, 13|2|4|5, 14|23|5, 14|2|35, 14|2|3|5, 1|24|3|5. %e A287640 T(6,3) = 11: 1245|3|6, 1346|2|5, 134|26|5, 134|2|56, 134|2|5|6, 145|23|6, 145|2|36, 145|2|3|6, 14|25|3|6, 15|24|3|6, 1|245|3|6. %e A287640 T(6,4) = 1: 1345|2|6. %e A287640 T(7,4) = 15: 12456|3|7, 13457|2|6, 1345|27|6, 1345|2|67, 1345|2|6|7, 1456|23|7, 1456|2|37, 1456|2|3|7, 145|26|3|7, 146|25|3|7, 14|256|3|7, 156|24|3|7, 15|246|3|7, 16|245|3|7, 1|2456|3|7. %e A287640 Triangle T(n,k) begins: %e A287640 1; %e A287640 1; %e A287640 1, 1; %e A287640 1, 4; %e A287640 1, 13, 1; %e A287640 1, 41, 9, 1; %e A287640 1, 131, 59, 11, 1; %e A287640 1, 428, 344, 88, 15, 1; %e A287640 1, 1429, 1906, 634, 146, 23, 1; %e A287640 1, 4861, 10345, 4389, 1231, 280, 39, 1; %e A287640 ... %p A287640 b:= proc(n, l) option remember; `if`(n=0 or l=[], 1, add(b(n-1, %p A287640 [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1)) %p A287640 end: %p A287640 T:= (n, k)-> `if`(k=0, 1, b(n, [0$k])-b(n, [0$k-1])): %p A287640 seq(seq(T(n, k), k=0..max(n/2, n-2)), n=0..12); %t A287640 b[n_, l_] := b[n, l] = If[n == 0 || l == {}, 1, Sum[b[n-1, Append[Table[ Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]]; %t A287640 T[n_, k_] := If[k == 0, 1, b[n, Table[0, k]] - b[n, Table[0, k - 1]]]; %t A287640 Table[T[n, k], {n, 0, 12}, { k, 0, Max[n/2, n - 2]}] // Flatten (* _Jean-François Alcover_, May 22 2018, translated from Maple *) %Y A287640 Columns k=0-1 give: A000012, A001453. %Y A287640 Row sums give A000110. %Y A287640 Cf. A168415, A287213, A287215, A287416, A287641. %K A287640 nonn,tabf %O A287640 0,6 %A A287640 _Alois P. Heinz_, May 28 2017