This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287644 #132 Feb 28 2025 12:02:00 %S A287644 1,0,0,8,15,32,133,384,2241 %N A287644 Maximum number of transversals in a diagonal Latin square of order n. %C A287644 Same as the maximum number of transversals in a Latin square of order n except n = 3. %C A287644 a(10) >= 5504 from Parker and Brown. %C A287644 Every diagonal Latin square is a Latin square and every orthogonal diagonal Latin square is a diagonal Latin square, so 0 <= A287645(n) <= A357514(n) <= a(n) <= A090741(n). - _Eduard I. Vatutin_, added Sep 20 2020, updated Mar 03 2023 %C A287644 a(11) >= 37851, a(12) >= 198144, a(13) >= 1030367, a(14) >= 3477504, a(15) >= 36362925, a(16) >= 244744192, a(17) >= 1606008513, a(19) >= 87656896891, a(23) >= 452794797220965, a(25) >= 41609568918940625. - _Eduard I. Vatutin_, Mar 08 2020, updated Mar 10 2022 %C A287644 Also a(n) is the maximum number of transversals in an orthogonal diagonal Latin square of order n for all orders except n=6 where orthogonal diagonal Latin squares don't exist. - _Eduard I. Vatutin_, Jan 23 2022 %C A287644 All cyclic diagonal Latin squares are diagonal Latin squares, so A348212((n-1)/2) <= a(n) for all orders n of which cyclic diagonal Latin squares exist. - _Eduard I. Vatutin_, Mar 25 2021 %D A287644 J. W. Brown et al., Completion of the spectrum of orthogonal diagonal Latin squares, Lecture notes in pure and applied mathematics, volume 139 (1992), pp. 43-49. %D A287644 E. T. Parker, Computer investigations of orthogonal Latin squares of order 10, Proc. Sympos. Appl. Math., volume 15 (1963), pp. 73-81. %H A287644 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&m=87577#post87577">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a>. %H A287644 E. I. Vatutin, <a href="https://vk.com/wall162891802_1347">About the minimal and maximal number of transversals in a diagonal Latin squares of order 9</a> (in Russian). %H A287644 Eduard I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_ls_cyclic_main_classes.pdf">Enumerating the Main Classes of Cyclic and Pandiagonal Latin Squares</a>, Recognition — 2021, pp. 77-79. (in Russian) %H A287644 Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, and Maxim Manzuk, <a href="https://doi.org/10.1007/978-3-030-66895-2_9">Evaluation of Efficiency of Using Simple Transformations When Searching for Orthogonal Diagonal Latin Squares of Order 10</a>, High-Performance Computing Systems and Technologies in Sci. Res., Automation of Control and Production (HPCST 2020), Communications in Comp. and Inf. Sci. book series (CCIS, Vol. 1304) Springer, Cham (2020), 127-146. %H A287644 Eduard Vatutin, Alexey Belyshev, Natalia Nikitina, Maxim Manzuk, Alexander Albertian, Ilya Kurochkin, Alexander Kripachev, and Alexey Pykhtin, <a href="https://doi.org/10.1007/978-3-031-49435-2_4">Diagonalization and Canonization of Latin Squares</a>, Supercomputing, Russian Supercomputing Days (RuSCDays 2023) Rev. Selected Papers Part II, LCNS Vol. 14389, Springer, Cham, 48-61. %H A287644 E. I. Vatutin, S. E. Kochemazov, and O. S. Zaikin, <a href="http://evatutin.narod.ru/evatutin_co_ls_dls_1_7_trans_and_symm.pdf">Estimating of combinatorial characteristics for diagonal Latin squares</a>, Recognition — 2017 (2017), pp. 98-100 (in Russian). %H A287644 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, N. N. Nikitina, and V. S. Titov, <a href="https://doi.org/10.25045/jpit.v10.i2.01">Central symmetry properties for diagonal Latin squares</a>, Problems of Information Technology (2019) No. 2, 3-8. %H A287644 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, <a href="http://ceur-ws.org/Vol-1973/paper01.pdf">Enumerating the Transversals for Diagonal Latin Squares of Small Order</a>. CEUR Workshop Proceedings. Proceedings of the Third International Conference BOINC-based High Performance Computing: Fundamental Research and Development (BOINC:FAST 2017). Vol. 1973. Technical University of Aachen, Germany, 2017, pp. 6-14. urn:nbn:de:0074-1973-0. %H A287644 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, and S. Yu. Valyaev, <a href="https://doi.org/10.1515/eng-2017-0052">Using Volunteer Computing to Study Some Features of Diagonal Latin Squares</a>. Open Engineering. Vol. 7. Iss. 1. 2017, pp. 453-460. DOI: 10.1515/eng-2017-0052 %H A287644 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, S. Yu. Valyaev, and V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_dls_trans_enum.pdf">Estimating the Number of Transversals for Diagonal Latin Squares of Small Order</a>, Telecommunications. 2018. No. 1, pp. 12-21 (in Russian). %H A287644 Eduard I. Vatutin, Natalia N. Nikitina, and Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian). %H A287644 E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021). Tula, 2021, pp. 7-17. (in Russian) %H A287644 E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, I. I. Kurochkin, A. M. Albertyan, <a href="https://evatutin.narod.ru/evatutin_ls_trans_num_in_dls.pdf">On the number of transversals in diagonal Latin squares of even orders</a> (in Russian), Cloud and distributed computing systems, within the National supercomputing forum (NSCF - 2023). Pereslavl-Zalessky, 2023. pp. 101-105. %H A287644 E. I. Vatutin, V. S. Titov, A. I. Pykhtin, A. V. Kripachev, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_high_orders_1.pdf">Estimation of the Cardinalities of the Spectra of Fast-computable Numerical Characteristics for Diagonal Latin Squares of Orders N>9</a> (in Russian) // Science and education in the development of industrial, social and economic spheres of Russian regions. Murom, 2022, pp. 314-315. %H A287644 Eduard I. Vatutin, <a href="/A287644/a287644_3.txt">Proving list (best known examples)</a>. %H A287644 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %Y A287644 Cf. A090741, A287645, A287647, A287648, A344105, A350585, A357514. %K A287644 nonn,more,hard %O A287644 1,4 %A A287644 _Eduard I. Vatutin_, May 29 2017 %E A287644 a(8) added by _Eduard I. Vatutin_, Oct 29 2017 %E A287644 a(9) added by _Eduard I. Vatutin_, Sep 20 2020