cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287650 Number of doubly symmetric diagonal Latin squares of order 4n with the first row in ascending order.

This page as a plain text file.
%I A287650 #108 Aug 08 2023 22:23:00
%S A287650 2,12288,81217160478720,6101215007109090122576072540160
%N A287650 Number of doubly symmetric diagonal Latin squares of order 4n with the first row in ascending order.
%C A287650 A doubly symmetric square has symmetries in both the horizontal and vertical planes.
%C A287650 The plane symmetry requires one-to-one correspondence between the values of elements a[i,j] and a[N+1-i,j] in a vertical plane, and between the values of elements a[i,j] and a[i,N+1-j] in a horizontal plane for 1 <= i,j <= N. - _Eduard I. Vatutin_, Alexey D. Belyshev, Oct 09 2017
%C A287650 Belyshev (2017) proved that doubly symmetric diagonal Latin squares exist only for orders N == 0 (mod 4).
%C A287650 Every doubly symmetric diagonal Latin square also has central symmetry. The converse is not true in general. It follows that a(n) <= A293777(4n). - _Eduard I. Vatutin_, May 26 2021
%C A287650 a(n)/(A001147(n)*2^(n*(4*n-3))) is the number of 2n X 2n grids with two instances of each of 1..n on the main diagonal and in each row and column with the first row in nondescreasing order. - _Andrew Howroyd_, May 30 2021
%H A287650 A. D. Belyshev, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=89143#post89143">Proof that the order of a doubly symmetric diagonal Latin squares is a multiple of 4</a>, 2017 (in Russian)
%H A287650 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=87577#post87577">Discussion about properties of diagonal Latin squares at forum.boinc.ru, value a(4) is wrong</a> (in Russian)
%H A287650 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=89332#post89332">Discussion about properties of diagonal Latin squares at forum.boinc.ru, corrected value a(4)</a> (in Russian)
%H A287650 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, <a href="http://evatutin.narod.ru/evatutin_co_ls_dls_1_7_trans_and_symm.pdf">Estimating of combinatorial characteristics for diagonal Latin squares</a>, Recognition — 2017 (2017), pp. 98-100 (in Russian)
%H A287650 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, <a href="http://ceur-ws.org/Vol-1940/paper10.pdf">On Some Features of Symmetric Diagonal Latin Squares</a>, CEUR WS, vol. 1940 (2017), pp. 74-79.
%H A287650 Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, <a href="https://doi.org/10.25045/jpit.v10.i2.01">Central symmetry properties for diagonal Latin squares</a>, Problems of Information Technology (2019) No. 2, 3-8.
%H A287650 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_ls_dls_symm.pdf">Investigation of the properties of symmetric diagonal Latin squares</a>, Proceedings of the 10th multiconference on control problems (2017), vol. 3, pp. 17-19 (in Russian).
%H A287650 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_ls_dls_symm_v2.pdf">Investigation of the properties of symmetric diagonal Latin squares. Working on errors</a>, Intellectual and Information Systems (2017), pp. 30-36 (in Russian).
%H A287650 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1635">On the interconnection between double and central symmetries in diagonal Latin squares</a> (in Russian).
%H A287650 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
%H A287650 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%F A287650 a(n) = A292517(n) / (4n)!.
%e A287650 Doubly symmetric diagonal Latin square example:
%e A287650   0 1 2 3 4 5 6 7
%e A287650   3 2 7 6 1 0 5 4
%e A287650   2 3 1 0 7 6 4 5
%e A287650   6 7 5 4 3 2 0 1
%e A287650   7 6 3 2 5 4 1 0
%e A287650   4 5 0 1 6 7 2 3
%e A287650   5 4 6 7 0 1 3 2
%e A287650   1 0 4 5 2 3 7 6
%e A287650 Reflection of all rows is equivalent to the exchange of elements 0 and 7, 1 and 6, 2 and 5, 3 and 4; hence, this square is horizontally symmetric. Reflection of all columns is equivalent to the exchange of elements 0 and 1, 2 and 4, 3 and 5, 6 and 7; hence, the square is also vertically symmetric.
%e A287650 From _Andrew Howroyd_, May 30 2021: (Start)
%e A287650 a(2) = 4*3*1024 = 12288. The 4 base quarter square arrangements are:
%e A287650   1 1 2 2  1 1 2 2  1 1 2 2  1 1 2 2
%e A287650   1 2 1 2  1 2 2 1  2 2 1 1  2 2 1 1
%e A287650   2 1 2 1  2 2 1 1  1 1 2 2  2 2 1 1
%e A287650   2 2 1 1  2 1 1 2  2 2 1 1  1 1 2 2
%e A287650 (End)
%Y A287650 Cf. A001147, A003191, A287649, A292517, A293777, A340550.
%K A287650 nonn,more,hard
%O A287650 1,1
%A A287650 _Eduard I. Vatutin_, May 29 2017
%E A287650 a(2) corrected by _Eduard I. Vatutin_, Alexey D. Belyshev, Oct 09 2017
%E A287650 Edited and a(3) from Alexey D. Belyshev added by _Max Alekseyev_, Aug 23 2018, Sep 07 2018
%E A287650 a(4) from _Andrew Howroyd_, May 31 2021