cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287651 Number of reduced pairs of orthogonal diagonal Latin squares of order n.

This page as a plain text file.
%I A287651 #40 Dec 24 2020 06:38:57
%S A287651 1,0,0,2,4,0,320,1322496,339930624
%N A287651 Number of reduced pairs of orthogonal diagonal Latin squares of order n.
%C A287651 A pair of orthogonal diagonal Latin squares is reduced if their first rows are in natural order.
%H A287651 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=87882#post87882">Discussion about properties of diagonal Latin squares at forum.boinc.ru</a> (in Russian)
%H A287651 E. I. Vatutin, <a href="http://forum.boinc.ru/default.aspx?g=posts&amp;m=87885#post87885">Discussion about properties of diagonal Latin squares at forum.boinc.ru, continuation</a> (in Russian)
%H A287651 Eduard I. Vatutin, Stepan E. Kochemazov, Oleq S. Zaikin, Maxim O. Manzuk, Natalia N. Nikitina, Vitaly S. Titov, <a href="https://doi.org/10.25045/jpit.v10.i2.01">Central symmetry properties for diagonal Latin squares</a>, Problems of Information Technology (2019) No. 2, 3-8.
%H A287651 E. I. Vatutin, S. E. Kochemazov, O. S. Zaikin, M. O. Manzuk, V. S. Titov, <a href="http://evatutin.narod.ru/evatutin_co_ls_odls_cnt_1_7.pdf">Combinatorial characteristics estimating for pairs of orthogonal diagonal Latin squares</a>, Multicore processors, parallel programming, FPGA, signal processing systems (2017), pp. 104-111 (in Russian).
%H A287651 Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1485">First results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H A287651 Eduard I. Vatutin, Natalia N. Nikitina, Maxim O. Manzuk, <a href="https://vk.com/wall162891802_1496">Additional calculated results of an experiment on studying the properties of DLS of order 9 in the volunteer distributed computing projects Gerasim@Home and RakeSearch</a> (in Russian).
%H A287651 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%F A287651 a(n) = A339926(n) / (n!)^2. - _Eduard I. Vatutin_, Dec 24 2020
%Y A287651 Cf. A266166, A339926.
%K A287651 nonn,more
%O A287651 1,4
%A A287651 _Eduard I. Vatutin_, May 29 2017
%E A287651 a(8) added by _Eduard I. Vatutin_, Jan 02 2018
%E A287651 a(9) added by _Eduard I. Vatutin_, Dec 22 2020