This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287666 #12 May 27 2018 10:32:54 %S A287666 1,1,2,5,15,52,202,861,3970,19596,102703,567867,3295439,19986462, %T A287666 126231946,827759525,5621051650,39439867696,285368007479, %U A287666 2125566382124,16273261632111,127881070062521,1030221084660031,8498826714433335,71721238761675612,618573094313147709 %N A287666 Number of set partitions of [n] such that j is member of block b only if b = 1 or at least one of j-1, ..., j-3 is member of a block >= b-1. %H A287666 Alois P. Heinz, <a href="/A287666/b287666.txt">Table of n, a(n) for n = 0..150</a> %H A287666 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a> %F A287666 a(n) = A287641(n,3). %F A287666 a(n) = A000110(n) for n <= 5. %e A287666 a(6) = 202 = 203 - 1 = A000110(6) - 1 counts all set partitions of [6] except: 1345|2|6. %p A287666 b:= proc(n, l) option remember; `if`(n=0, 1, add(b(n-1, %p A287666 [seq(max(l[i], j), i=2..nops(l)), j]), j=1..l[1]+1)) %p A287666 end: %p A287666 a:= n-> b(n, [0$3]): %p A287666 seq(a(n), n=0..26); %t A287666 b[n_, l_] := b[n, l] = If[n == 0, 1, Sum[b[n - 1, Append[Table[Max[l[[i]], j], {i, 2, Length[l]}], j]], {j, 1, l[[1]] + 1}]]; %t A287666 a[n_] := b[n, {0, 0, 0}]; %t A287666 Table[a[n], {n, 0, 26}] (* _Jean-François Alcover_, May 27 2018, from Maple *) %Y A287666 Column k=3 of A287641. %Y A287666 Cf. A000110. %K A287666 nonn %O A287666 0,3 %A A287666 _Alois P. Heinz_, May 29 2017