A287683 5-tuples of practical numbers: numbers n such that n-6, n-2, n, n+2, n+6 are all practical numbers.
18, 30, 198, 306, 462, 1482, 2550, 4422, 17298, 23322, 23550, 40350, 52578, 67938, 88506, 92202, 96222, 123006, 131070, 219102, 226182, 237690, 277506, 312702, 359658, 432822, 526878, 533370, 584166, 659934, 1032858, 1051650, 1140414, 1142658, 1243170, 1255422
Offset: 1
Keywords
Links
- Amiram Eldar and Giovanni Resta, Table of n, a(n) for n = 1..10000 (first 100 terms from Amiram Eldar)
- Giuseppe Melfi, A survey on practical numbers, Rend. Sem. Mat. Univ. Pol. Torino, 53, (1995), 347-359.
- Giuseppe Melfi, On 5-tuples of twin practical numbers, Bollettino della Unione Matematica Italiana, Serie 8, Vol. 2-B, No. 3 (1999), pp. 723-734.
- Giuseppe Melfi, 5-uples of practical numbers
Programs
-
Mathematica
prQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e} = Transpose[f]; Do[If[p[[i]] > 1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; quintupleQ[n_] := prQ[n-6]&&prQ[n-2]&&prQ[n]&&prQ[n+2]&&prQ[n+6]; a={}; k=8; While[Length[a]<100, If[quintupleQ[k], a=AppendTo[a,k]]; k+=2];a
Comments