This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287688 #24 Jul 10 2017 04:28:17 %S A287688 2,6,7,10,15,13,15,21,28,22,21,28,36,45,32,28,36,45,55,66,45,36,45,55, %T A287688 66,78,91,59,45,55,66,78,91,105,120,76,55,66,78,91,105,120,136,153,94, %U A287688 66,78,91,105,120,136,153,171,190,115,78,91,105,120,136,153,171,190,210,231,137 %N A287688 Triangle read by rows: T(j,k) is the number of distinct edge segment pairs in a j X k rectangular grid. %C A287688 This gives the number of pairs of edge segments that are distinct with respect to rotation and mirror images. Sequence is arranged so that j <= k (since 2 X 3 and 3 X 2 are equivalent grids), first by increasing j, then by increasing k: a(1) = 1 X 1 = 2, a(2) = 1 X 2 = 6, a(3) = 2 X 2 = 7, a(4) = 1 X 3 = 10. %C A287688 Here j = A002260(n), k = A002024(n), and n = A000217(k-1) + j. %C A287688 Where j != k, a(n) = A000217(j + k). %C A287688 Where j = k, a(n) is approximately A236312(j-2); a(n) >= A236312(j-2). %H A287688 Doug Bell, <a href="/A287688/b287688.txt">Table of n, a(n) for n = 1..11325</a>, rows n = 1..150, flattened. %e A287688 Triangle begins: %e A287688 2; %e A287688 6, 7; %e A287688 10, 15, 13; %e A287688 15, 21, 28, 22; %e A287688 21, 28, 36, 45, 32; %e A287688 28, 36, 45, 55, 66, 45; %e A287688 36, 45, 55, 66, 78, 91, 59; %e A287688 ... %e A287688 For n = 3, the a(3) = 7 pairs of edge segments for a 2 X 2 rectangular grid are: %e A287688 + - - + + * * + + * - + + * - + + * - + + * - + + * - + + * - + %e A287688 | | --\ | | | * | | | | | | | | * | %e A287688 | | --/ | | | | | * | | | | * | | | %e A287688 + - - + + - - +, + - - +, + - - +, + - * +, + * - +, + - - +, + - - +. %Y A287688 Cf. A002260, A002024, A000217, A236312. Distinct edge segments A287618. %K A287688 nonn,tabl %O A287688 1,1 %A A287688 _Doug Bell_, May 29 2017