A287691 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of squarefree numbers A002110(n) <= m <= (A002110(n+1)-1) such that A001221(m) = n and m is divisible by A002110(k).
1, 2, 1, 2, 4, 1, 3, 7, 8, 1, 5, 12, 23, 17, 1, 6, 16, 44, 56, 29, 1, 9, 24, 78, 130, 139, 41, 1, 9, 30, 107, 214, 351, 224, 59, 1, 11, 39, 154, 332, 707, 650, 389, 76, 1, 17, 64, 261, 598, 1475, 1637, 1489, 640, 112, 1, 21, 82, 378, 902, 2496, 3155, 3782
Offset: 0
Examples
The triangle starts: n | 0 1 2 3 4 5 6 7 8 9 10 ------------------------------------------------------------- 0 | 1 1 | 2 1 2 | 2 4 1 3 | 3 7 8 1 4 | 5 12 23 17 1 5 | 6 16 44 56 29 1 6 | 9 24 78 130 139 41 1 7 | 9 30 107 214 351 224 59 1 8 | 11 39 154 332 707 650 389 76 1 9 | 17 64 261 598 1475 1637 1489 640 112 1 10 | 21 82 378 902 2496 3155 3782 2505 1041 144 1 ... Let p_n# = A002110(n). There are A287484(2) = 7 squarefree numbers m between p_2# = 6 and p_3# - 1 = 29: {6, 10, 14, 15, 21, 22, 26}. Of these, {15, 21} are divisible by p_0# = 1, {10, 14, 22, 26} are divisible by p_1# = 2, and {6} is divisible by p_2# = 6. Thus, T(2,k) = {2, 4, 1}. Note that the terms {15, 21}, {10, 14, 22, 26}, and {6} pertaining to the above example appear in row n of A287483 sorted as {6, 10, 14, 15, 21, 22, 26}. - _Michael De Vlieger_, Jun 07 2017
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..230 (rows 0 <= n <= 20).
Programs
-
Mathematica
Table[Length /@ Split@ Sort@ Map[Block[{k = 1}, While[Divisible[#, Prime@ k], k++]; k] &, Select[Range[#, Prime[n + 1] #], And[SquareFreeQ@ #, PrimeOmega@ # == n] &] &@ Product[Prime@ i, {i, n}]], {n, 0, 6}] // Flatten (* Michael De Vlieger, May 29 2017 *)
Comments