This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287696 #19 Jun 13 2017 13:20:42 %S A287696 1,0,1,0,-3,4,0,46,-81,36,0,-1899,3916,-2592,576,0,163476,-375375, %T A287696 305500,-108000,14400,0,-25333590,63002191,-58725000,26370000, %U A287696 -5832000,518400,0,6412369860,-16976577828,17470973569,-9168390000,2636298000,-400075200,25401600 %N A287696 Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n. %C A287696 The polynomials Sum_{k=0..n} T(n,k) x^k generate the columns of A287698. %F A287696 Sum_{k=0..n} T(n,k) = A000012(n). %F A287696 Sum_{k=0..n} abs(T(n,k)) = A212856(n) = A212855_row(3). %e A287696 0: [1] %e A287696 1: [0, 1] %e A287696 2: [0, -3, 4] %e A287696 3: [0, 46, -81, 36] %e A287696 4: [0, -1899, 3916, -2592, 576] %e A287696 5: [0, 163476, -375375, 305500, -108000, 14400] %e A287696 6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400] %p A287696 A287696_row := proc(n) local k; hypergeom([],[1,1],z); series(%^x, z=0, n+1): %p A287696 n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end: %p A287696 for n from 0 to 8 do A287696_row(n) od; %p A287696 A287696_poly := proc(n) local k, x; hypergeom([],[1,1],z); series(%^x, z=0, n+1): %p A287696 unapply(n!^3*coeff(%, z, n), x); end: %p A287696 for n from 0 to 7 do A287696_poly(n) od; %t A287696 T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}]; %t A287696 Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 13 2017 *) %Y A287696 T(n,n) = A001044(n). %Y A287696 Cf. A212856, A212855, A287314, A287698. %K A287696 sign,tabl %O A287696 0,5 %A A287696 _Peter Luschny_, May 30 2017