This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287704 #16 Jul 28 2017 09:56:18 %S A287704 2,12,1,1,60,1,120,1,84,1,1,63,1,60,1,252,1,24,1,132,1,1,40,1,33,1, %T A287704 5460,1,240,1,44,1,936,1,12,1,1,33,1,585,1,3,1,1020,1,132,1,910,1,2,1, %U A287704 680,1,1596,1,1,3276,1,1,1,680,1,1197,1,660,1 %N A287704 Triangle read by rows, denominators of T(n,k) = (-1)^(n+k)*binomial(n-1,k)* Bernoulli(n+k)/ (n+k) for n>=1, 0<=k<=n-1. %e A287704 1: 2 %e A287704 2: 12, 1 %e A287704 3: 1, 60, 1 %e A287704 4: 120, 1, 84, 1 %e A287704 5: 1, 63, 1, 60, 1 %e A287704 6: 252, 1, 24, 1, 132, 1 %e A287704 7: 1, 40, 1, 33, 1, 5460, 1 %e A287704 8: 240, 1, 44, 1, 936, 1, 12, 1 %e A287704 9: 1, 33, 1, 585, 1, 3, 1, 1020, 1 %p A287704 T := (n, k) -> denom((-1)^(n+k)*binomial(n-1, k)*bernoulli(n+k)/(n+k)): %p A287704 for n from 1 to 9 do seq(T(n, k), k=0..n-1) od; %t A287704 T[n_, k_]:=Denominator[(-1)^n*Binomial[n - 1, k] BernoulliB[k + n]/(k + n)]; Table[T[n, k], {n, 11}, {k, 0, n - 1}]//Flatten (* _Indranil Ghosh_, Jul 27 2017 *) %o A287704 (PARI) T(n, k) = denominator((-1)^n*binomial(n-1,k)*bernfrac(k+n)/(k+n)); %o A287704 tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, Jul 28 2017 %Y A287704 Numerators in A287703. %K A287704 nonn,tabl,frac %O A287704 1,1 %A A287704 _Peter Luschny_, Jun 21 2017