cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287762 Number of self-orthogonal diagonal Latin squares of order n.

This page as a plain text file.
%I A287762 #56 Sep 09 2023 18:00:11
%S A287762 1,0,0,48,480,0,322560,46448640,81587036160,850065850368000
%N A287762 Number of self-orthogonal diagonal Latin squares of order n.
%C A287762 A self-orthogonal diagonal Latin square is a diagonal Latin square orthogonal to its transpose.
%C A287762 A333671(n) <= a(n) <= A309599(n) <= A305571(n). - _Eduard I. Vatutin_, Apr 26 2020.
%H A287762 E. I. Vatutin, <a href="https://vk.com/wall162891802_1102">About the number of SODLS of order 10, a(10) value is wrong </a> (in Russian).
%H A287762 E. I. Vatutin, <a href="https://vk.com/wall162891802_1136">About the number of SODLS of order 10, corrected value a(10)</a> (in Russian).
%H A287762 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_sodls_1_to_10.zip">List of all main classes of self-orthogonal diagonal Latin squares of orders 1-10</a>.
%H A287762 E. I. Vatutin, <a href="http://evatutin.narod.ru/evatutin_dls_spec_types_list.pdf">Special types of diagonal Latin squares</a>, Cloud and distributed computing systems in electronic control conference, within the National supercomputing forum (NSCF - 2022). Pereslavl-Zalessky, 2023. pp. 9-18. (in Russian)
%H A287762 E. I. Vatutin and A. D. Belyshev, <a href="http://evatutin.narod.ru/evatutin_sodls_and_dsodls_1_to_10.pdf">About the number of self-orthogonal (SODLS) and doubly self-orthogonal diagonal Latin squares (DSODLS) of orders 1-10</a>. High-performance computing systems and technologies. Vol. 4. No. 1. 2020. pp. 58-63. (in Russian)
%H A287762 E. Vatutin and A. Belyshev, <a href="https://www.springerprofessional.de/en/enumerating-the-orthogonal-diagonal-latin-squares-of-small-order/18659992">Enumerating the Orthogonal Diagonal Latin Squares of Small Order for Different Types of Orthogonality</a>, Communications in Computer and Information Science, Vol. 1331, Springer, 2020, pp. 586-597.
%H A287762 H. White, <a href="http://budshaw.ca/SODLS.html">Self-orthogonal Diagonal Latin Squares. How many</a>.
%H A287762 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%F A287762 a(n) = A287761(n)*n!.
%e A287762 0 1 2 3 4 5 6 7 8 9
%e A287762 5 2 0 9 7 8 1 4 6 3
%e A287762 9 5 7 1 8 6 4 3 0 2
%e A287762 7 8 6 4 9 2 5 1 3 0
%e A287762 8 9 5 0 3 4 2 6 7 1
%e A287762 3 6 9 5 2 1 7 0 4 8
%e A287762 4 3 1 7 6 0 8 2 9 5
%e A287762 6 7 8 2 5 3 0 9 1 4
%e A287762 2 0 4 6 1 9 3 8 5 7
%e A287762 1 4 3 8 0 7 9 5 2 6
%Y A287762 Cf. A160368, A287761, A329685.
%K A287762 nonn,more,hard
%O A287762 1,4
%A A287762 _Eduard I. Vatutin_, May 31 2017
%E A287762 a(10) from _Eduard I. Vatutin_, Mar 14 2020
%E A287762 a(10) corrected by _Eduard I. Vatutin_, Apr 24 2020