A287805 Number of quinary sequences of length n such that no two consecutive terms have distance 2.
1, 5, 19, 73, 281, 1083, 4175, 16097, 62065, 239307, 922711, 3557761, 13717913, 52893147, 203943935, 786361409, 3032030689, 11690820555, 45077144455, 173807214241, 670161078089, 2583988659867, 9963272432111, 38416111919777, 148123788152017, 571131629935179
Offset: 0
Examples
For n=2 the a(2)=19=25-6 sequences contain every combination except these six: 02,20,13,31,24,42.
Links
- Index entries for linear recurrences with constant coefficients, signature (4, 1, -6).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{4, 1, -6}, {1, 5, 19, 73}, 40]
-
Python
def a(n): if n in [0,1,2,3]: return [1,5,19,73][n] return 4*a(n-1)+a(n-2)-6*a(n-3)
Formula
For n>0, a(n) = 4*a(n-1) + a(n-2) - 6*a(n-3), a(1)=5, a(2)=19, a(3)=73.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 4*x - x^2 + 6*x^3).