A287810 Number of septenary sequences of length n such that no two consecutive terms have distance 3.
1, 7, 41, 241, 1417, 8333, 49005, 288193, 1694833, 9967141, 58615749, 344713305, 2027224169, 11921900829, 70111496093, 412318635697, 2424804301985, 14260029486677, 83861794865077, 493182755657289, 2900358033942041, 17056713010658765, 100308808541321741
Offset: 0
Examples
For n=2 the a(2) = 49-8 = 41 sequences contain every combination except these eight: 03, 30, 14, 41, 25, 52, 36, 63.
Links
- Index entries for linear recurrences with constant coefficients, signature (6, 1, -10).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{6, 1, -10}, {1, 7, 41, 241}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3]: return [1, 7, 41, 241][n] return 6*a(n-1)+a(n-2)-10*a(n-3)
Formula
For n>3, a(n) = 6*a(n-1) + a(n-2) - 10*a(n-3), a(0)=1, a(1)=7, a(2)=41, a(3)=241.
G.f.: (1 + x - 2*x^2 - 2*x^3)/(1 - 6*x - x^2 + 10*x^3).