A287812 Number of octonary sequences of length n such that no two consecutive terms have distance 1.
1, 8, 50, 314, 1972, 12386, 77796, 488636, 3069120, 19277130, 121079578, 760500364, 4776699874, 30002433636, 188445170924, 1183623397912, 7434334035874, 46695023649050, 293291264969380, 1842161313673506, 11570608166423524, 72674945645197500
Offset: 0
Examples
For n=2 the a(2) = 64 - 14 = 50 sequences contain every combination except these fourteen: 01,10,12,21,23,32,34,43,45,54,56,65,67,76.
Links
- Index entries for linear recurrences with constant coefficients, signature (7, -3, -10, 3).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{7, -3, -10, 3}, {1, 8, 50, 314, 1972}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3, 4]: return [1, 8, 50, 314, 1972][n] return 7*a(n-1)-3*a(n-2)-10*a(n-3)+3*a(n-4)
Formula
For n>4, a(n) = 7*a(n-1) - 3*a(n-2) - 10*a(n-3) + 3*a(n-2), a(0)=1, a(1)=8, a(2)=50, a(3)=314, a(4)=1972.
G.f.: (-1 - x + 3 x^2 + 2 x^3 - x^4)/(-1 + 7 x - 3 x^2 - 10 x^3 + 3 x^4).