A287814 Number of octonary sequences of length n such that no two consecutive terms have distance 3.
1, 8, 54, 366, 2482, 16834, 114178, 774426, 5252642, 35626714, 241642738, 1638972746, 11116542082, 75399367194, 511405842898, 3468675479466, 23526734684322, 159573084361274, 1082324835734258, 7341006503296586, 49791314679463362, 337715954398900954
Offset: 0
Examples
For n=2 the a(2) = 64 - 10 = 54 sequences contain every combination except these ten: 03,30,14,41,25,52,36,63,47,74.
Links
- Index entries for linear recurrences with constant coefficients, signature (7, 0, -10).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{7, 0, -10}, {1, 8, 54, 366}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3]: return [1, 8, 54, 366][n] return 7*a(n-1)-10*a(n-3)
Formula
For n>3, a(n) = 7*a(n-1) - 10*a(n-3), a(0)=1, a(1)=8, a(2)=54, a(3)=366.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 7 x + 10 x^3).