cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287816 Number of nonary sequences of length n such that no two consecutive terms have distance 1.

Original entry on oeis.org

1, 9, 65, 471, 3413, 24733, 179233, 1298853, 9412437, 68209395, 494295113, 3582023557, 25957960001, 188110345129, 1363185009337, 9878634630295, 71587804656589, 518777540353453, 3759441118026705, 27243657291488469, 197427447142906157, 1430703538380753875
Offset: 0

Views

Author

David Nacin, Jun 02 2017

Keywords

Examples

			For n=2 the a(2) = 81 - 16 = 65 sequences contain every combination except these sixteen: 01,10,12,21,23,32,34,43,45,54,56,65,67,76,78,87.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{9, -11, -15, 19, 1}, {1, 9, 65 , 471, 3413}, 40]
  • Python
    def a(n):
     if n in [0, 1, 2, 3, 4]:
      return [1, 9, 65 , 471, 3413][n]
     return 9*a(n-1)-11*a(n-2)-15*a(n-3)+19*a(n-4)+a(n-5)

Formula

a(n) = 9*a(n-1) - 11*a(n-2) - 15*a(n-3) + 19*a(n-4) + a(n-5), a(0)=1, a(1)=9, a(2)=65, a(3)=471, a(4)=3413.
G.f: (-1 + 5 x^2 - 5 x^4)/(-1 + 9 x - 11 x^2 - 15 x^3 + 19 x^4 + x^5).