A287816 Number of nonary sequences of length n such that no two consecutive terms have distance 1.
1, 9, 65, 471, 3413, 24733, 179233, 1298853, 9412437, 68209395, 494295113, 3582023557, 25957960001, 188110345129, 1363185009337, 9878634630295, 71587804656589, 518777540353453, 3759441118026705, 27243657291488469, 197427447142906157, 1430703538380753875
Offset: 0
Examples
For n=2 the a(2) = 81 - 16 = 65 sequences contain every combination except these sixteen: 01,10,12,21,23,32,34,43,45,54,56,65,67,76,78,87.
Links
- Index entries for linear recurrences with constant coefficients, signature (9, -11, -15, 19, 1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{9, -11, -15, 19, 1}, {1, 9, 65 , 471, 3413}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3, 4]: return [1, 9, 65 , 471, 3413][n] return 9*a(n-1)-11*a(n-2)-15*a(n-3)+19*a(n-4)+a(n-5)
Formula
a(n) = 9*a(n-1) - 11*a(n-2) - 15*a(n-3) + 19*a(n-4) + a(n-5), a(0)=1, a(1)=9, a(2)=65, a(3)=471, a(4)=3413.
G.f: (-1 + 5 x^2 - 5 x^4)/(-1 + 9 x - 11 x^2 - 15 x^3 + 19 x^4 + x^5).