A287817 Number of nonary sequences of length n such that no two consecutive terms have distance 2.
1, 9, 67, 501, 3747, 28025, 209609, 1567743, 11725731, 87701095, 655949055, 4906086571, 36694443381, 274451368893, 2052723708275, 15353082914309, 114831408642039, 858866749063989, 6423783365292409, 48045861327359751, 359352839194448551, 2687733333725785179
Offset: 0
Examples
For n=2 the a(2) = 81 - 14 = 67 sequences contain every combination except these fourteen: 02,20,13,31,24,42,35,53,46,64,57,75,68,86.
Links
- Index entries for linear recurrences with constant coefficients, signature (8, -1, -23, 10, 1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{8, -1, -23, 10, 1}, {1, 9, 67 , 501, 3747}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3, 4]: return [1, 9, 67 , 501, 3747][n] return 8*a(n-1)-a(n-2)-23*a(n-3)+10*a(n-4)+a(n-5)
Formula
a(n) = 8*a(n-1) - 1*a(n-2) - 23*a(n-3) + 10*a(n-4) + a(n-5), a(0)=1, a(1)=9, a(2)=67, a(3)=501, a(4)=3747.
G.f: (-1 - x + 4 x^2 + 3 x^3 - 3 x^4)/(-1 + 8 x - x^2 - 23 x^3 + 10 x^4 + x^5).