A287819 Number of nonary sequences of length n such that no two consecutive terms have distance 4.
1, 9, 71, 561, 4433, 35031, 276827, 2187585, 17287073, 136608591, 1079529611, 8530826457, 67413620993, 532726379847, 4209793089371, 33267280400913, 262889866978817, 2077449112980255, 16416740845208075, 129730917736941417, 1025179795159015841
Offset: 0
Examples
For n=2 the a(2) = 81 - 10 = 71 sequences contain every combination except these ten: 04,40,15,51,26,62,37,73,48,84.
Links
- Index entries for linear recurrences with constant coefficients, signature (8,1,-14).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{8, 1, -14}, {1, 9, 71, 561}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3]: return [1, 9, 71, 561][n] return 8*a(n-1)+a(n-2)-14*a(n-3)
Formula
For n>2, a(n) = 8*a(n-1) + a(n-2) - 14*a(n-3), a(0)=1, a(1)=9, a(2)=71, a(3)=561.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 8 x - x^2 + 14 x^3).