This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287822 #22 Mar 14 2024 19:01:47 %S A287822 1,0,1,0,1,1,0,3,1,1,0,5,7,1,1,0,13,18,9,1,1,0,31,59,29,11,1,1,0,71, %T A287822 193,112,38,13,1,1,0,181,616,405,163,48,15,1,1,0,447,1955,1514,648, %U A287822 220,59,17,1,1,0,1111,6244,5565,2571,925,288,71,19,1,1 %N A287822 Number T(n,k) of Dyck paths of semilength n such that the maximal number of peaks per level equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A287822 T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(n,k) = 0 if k>n. %H A287822 Alois P. Heinz, <a href="/A287822/b287822.txt">Rows n = 0..100, flattened</a> %H A287822 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %F A287822 T(n,k) = A287847(n,k) - A287847(n,k-1) for k>0, T(n,0) = A000007(n). %e A287822 . T(4,1) = 5: /\ %e A287822 . /\ /\ /\ /\ / \ %e A287822 . / \ /\/ \ / \ / \/\ / \ %e A287822 . /\/ \ / \ / \/\ / \ / \ . %e A287822 . %e A287822 . T(4,2) = 7: /\ /\ /\/\ /\ /\ /\ %e A287822 . /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/ \ . %e A287822 . %e A287822 . /\/\ %e A287822 . /\/\ / \ %e A287822 . / \/\ / \ . %e A287822 . %e A287822 . T(4,3) = 1: /\/\/\ %e A287822 . / \ . %e A287822 . %e A287822 . T(4,4) = 1: /\/\/\/\ . %e A287822 . %e A287822 Triangle T(n,k) begins: %e A287822 1; %e A287822 0, 1; %e A287822 0, 1, 1; %e A287822 0, 3, 1, 1; %e A287822 0, 5, 7, 1, 1; %e A287822 0, 13, 18, 9, 1, 1; %e A287822 0, 31, 59, 29, 11, 1, 1; %e A287822 0, 71, 193, 112, 38, 13, 1, 1; %e A287822 0, 181, 616, 405, 163, 48, 15, 1, 1; %e A287822 0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1; %e A287822 ... %p A287822 b:= proc(n, k, j) option remember; `if`(j=n, 1, add( %p A287822 b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m), %p A287822 m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j))) %p A287822 end: %p A287822 A:= proc(n, k) option remember; `if`(n=0, 1, (m-> %p A287822 add(b(n, m, j), j=1..m))(min(n, k))) %p A287822 end: %p A287822 T:= (n, k)-> A(n, k)- `if`(k=0, 0, A(n, k-1)): %p A287822 seq(seq(T(n, k), k=0..n), n=0..12); %t A287822 b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]]; %t A287822 A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]]; %t A287822 T[n_, k_] := A[n, k] - If[k==0, 0, A[n, k - 1]]; %t A287822 Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* _Jean-François Alcover_, May 25 2018, translated from Maple *) %Y A287822 Columns k=0-10 give: A000007, A281874 (for n>0), A288743, A288744, A288745, A288746, A288747, A288748, A288749, A288750, A288751. %Y A287822 Row sums give A000108. %Y A287822 T(2n,n) gives A287860. %Y A287822 Cf. A287847. %K A287822 nonn,tabl %O A287822 0,8 %A A287822 _Alois P. Heinz_, Jun 01 2017