A287825 Number of sequences over the alphabet {0,1,...,9} such that no two consecutive terms have distance 1.
1, 10, 82, 674, 5540, 45538, 374316, 3076828, 25291120, 207889674, 1708825732, 14046322404, 115458919774, 949057110644, 7801124426174, 64124215108032, 527092600834054, 4332631742719370, 35613662169258228, 292739611493034596, 2406281042646218328
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (9, -4, -21, 9, 5).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{9, -4, -21, 9, 5}, {1, 10, 82, 674, 5540, 45538}, 40]
-
Python
def a(n): if n in [0, 1, 2, 3, 4, 5]: return [1, 10, 82, 674, 5540, 45538][n] return 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5)
Formula
For n>5, a(n) = 9*a(n-1) - 4*a(n-2) - 21*a(n-3) + 9*a(n-4) + 5*a(n-5), a(0)=1, a(1)=10, a(2)=82, a(3)=674, a(4)=5540, a(5)=45538.
G.f.: (-1 - x + 4*x^2 + 3*x^3 - 3*x^4 - x^5)/(-1 + 9*x - 4*x^2 - 21*x^3 + 9*x^4 + 5*x^5).
Comments