A287833 Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 2.
1, 11, 103, 967, 9079, 85243, 800351, 7514541, 70554457, 662439857, 6219685951, 58396989455, 548292695881, 5147951686649, 48334414751849, 453814602701801, 4260891430727991, 40005754941255473, 375616336261903907, 3526683405274793053, 33112233522155404139
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (10,-2,-37,16,19,1).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{10, -2, -37, 16, 19, 1}, {1, 11, 103, 967, 9079, 85243}, 20]
-
Python
def a(n): if n in [0,1,2,3,4,5]: return [1, 11, 103, 967, 9079, 85243][n] return 10*a(n-1) - 2*a(n-2) - 37*a(n-3) + 16*a(n-4) + 19*a(n-5) + a(n-6)
Formula
a(n) = 10*a(n-1) - 2*a(n-2) - 37*a(n-3) + 16*a(n-4) + 19*a(n-5) + a(n-6), a(0)=1, a(1)=11, a(2)=103, a(3)=967, a(4)=9079, a(5)=85243.
G.f.: (-1 - x + 5*x^2 + 4*x^3 - 6*x^4 - 3*x^5)/(-1 + 10*x - 2*x^2 - 37*x^3 + 16*x^4 + 19*x^5 + x^6).