A287835 Number of words of length n over the alphabet {0,1,...,10} such that no two consecutive terms have distance 4.
1, 11, 107, 1043, 10169, 99149, 966719, 9425675, 91901945, 896059709, 8736735695, 85184670011, 830565128489, 8098152315149, 78958372642847, 769857662314475, 7506244118089817, 73187166301583837, 713587411625345903, 6957599532298617755, 67837787583138657929
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (10,-1,-14)
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{10, -1, -14}, {1, 11, 107, 1043}, 20]
-
Python
def a(n): if n in [0,1,2,3]: return [1, 11, 107, 1043][n] return 10*a(n-1) - a(n-2) - 14*a(n-3)
Formula
For n>3, a(n) = 10*a(n-1) - a(n-2) - 14*a(n-3), a(0)=1, a(1)=11, a(2)=107, a(3)=1043.
G.f.: (1 + x - 2 x^2 - 2 x^3)/(1 - 10 x + x^2 + 14 x^3).