A287840 Numbers that generate Carmichael numbers using Erdős's method.
36, 48, 60, 72, 80, 108, 112, 120, 144, 180, 198, 216, 224, 240, 252, 288, 300, 324, 336, 360, 396, 420, 432, 468, 480, 504, 528, 540, 560, 576, 594, 600, 612, 630, 648, 660, 672, 720, 756, 768, 780, 792, 810, 828, 840, 864, 900, 936, 960, 972, 990, 1008
Offset: 1
Keywords
Examples
The set of primes for n = 36 is P={5, 7, 13, 19, 37}. Two subsets, {7, 13, 19} and {7, 13, 19, 37} have c == 1 (mod n): c = 7*13*19 = 1729 and c = 7*13*19*37 = 63973. 36 is the first number that generates Carmichael numbers thus a(1)=36.
Links
- Paul Erdős, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), pp. 201-206.
- Andrew Granville, Primality testing and Carmichael numbers, Notices of the American Mathematical Society, Vol. 39 No. 6 (1992), pp. 696-700.
- Andrew Granville and Carl Pomerance, Two contradictory conjectures concerning Carmichael numbers, Mathematics of Computation, Vol. 71, No. 238 (2002), pp. 883-908.
Crossrefs
Cf. A002997.
Programs
-
Mathematica
a = {}; Do[p = Select[Divisors[n] + 1, PrimeQ]; pr = Times @@ p; pr = pr/GCD[n, pr]; ps = Divisors[pr]; c = 0; Do[p1 = FactorInteger[ps[[j]]][[;; , 1]]; If[Length[p1] < 3, Continue[]]; c1 = Times @@ p1; If[Mod[c1, n] == 1, c++], {j, 1, Length[ps]}]; If[c > 0, AppendTo[a, n]], {n, 1, 1000}]; a
Comments