cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A287841 Number of iterations of number of distinct prime factors (A001221) needed to reach 1 starting at n (n is counted).

This page as a plain text file.
%I A287841 #14 Feb 16 2025 08:33:47
%S A287841 1,2,2,2,2,3,2,2,2,3,2,3,2,3,3,2,2,3,2,3,3,3,2,3,2,3,2,3,2,3,2,2,3,3,
%T A287841 3,3,2,3,3,3,2,3,2,3,3,3,2,3,2,3,3,3,2,3,3,3,3,3,2,3,2,3,3,2,3,3,2,3,
%U A287841 3,3,2,3,2,3,3,3,3,3,2,3,2,3,2,3,3,3,3,3,2,3,3,3,3,3,3,3,2,3,3,3,2,3,2,3,3
%N A287841 Number of iterations of number of distinct prime factors (A001221) needed to reach 1 starting at n (n is counted).
%H A287841 Antti Karttunen, <a href="/A287841/b287841.txt">Table of n, a(n) for n = 1..16384</a>
%H A287841 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DistinctPrimeFactors.html">Distinct Prime Factors</a>
%H A287841 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A287841 a(n) = a(omega(n)) + 1 for n > 1, where omega() is the number of distinct prime factors.
%e A287841 If n = 6 the trajectory is {6, 2, 1}. Its length is 3, thus a(6) = 3.
%t A287841 f[n_] := Length[NestWhileList[ PrimeNu, n, # != 1 &]]; Array[f, 105]
%t A287841 a[1] = 1; a[n_] := a[n] = a[PrimeNu[n]] + 1; Table[a[n], {n, 105}]
%o A287841 (PARI) A287841(n) = if(1==n,n,1+A287841(omega(n))); \\ _Antti Karttunen_, Nov 23 2017
%o A287841 (Python)
%o A287841 from sympy import primefactors
%o A287841 def a(n): return 1 if n==1 else a(len(primefactors(n))) + 1 # _Indranil Ghosh_, Jun 03 2017
%Y A287841 Cf. A001221, A036430, A036459, A049108, A073855, A115658 (first occurrence), A246655 (positions of 2).
%K A287841 nonn
%O A287841 1,2
%A A287841 _Ilya Gutkovskiy_, Jun 01 2017