This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A287845 #28 Mar 04 2024 15:01:47 %S A287845 1,0,1,0,0,3,6,0,9,54,138,207,360,1368,4545,11304,25182,61605,173916, %T A287845 498798,1347417,3497328,9147060,24630669,67414590,184065966,498495303, %U A287845 1345622436,3642036804,9900361107,26982011250,73570082760,200540053395,546660151722 %N A287845 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly two peaks. %H A287845 Alois P. Heinz, <a href="/A287845/b287845.txt">Table of n, a(n) for n = 0..1000</a> %H A287845 Manosij Ghosh Dastidar and Michael Wallner, <a href="https://arxiv.org/abs/2402.17849">Bijections and congruences involving lattice paths and integer compositions</a>, arXiv:2402.17849 [math.CO], 2024. See p. 15. %H A287845 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %e A287845 . a(2) = 1: /\/\ . %e A287845 . %e A287845 . a(5) = 3: %e A287845 . %e A287845 . /\/\ /\/\ /\/\ %e A287845 . /\/\/ \ /\/ \/\ / \/\/\ . %p A287845 b:= proc(n, j) option remember; %p A287845 `if`(n=j or n=0, 1, add(b(n-j, i)*i*(i-1)/2 %p A287845 *binomial(j-1, i-3), i=3..min(j+2, n-j))) %p A287845 end: %p A287845 a:= n-> b(n, 2): %p A287845 seq(a(n), n=0..35); %t A287845 b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*i*(i - 1)/2* Binomial[j - 1, i - 3], {i, 3, Min[j + 2, n - j]}]]; %t A287845 a[n_] := b[n, 2]; %t A287845 Table[a[n], {n, 0, 35}] (* _Jean-François Alcover_, May 25 2018, translated from Maple *) %Y A287845 Column k=2 of A288318. %Y A287845 Cf. A000108, A281874, A287843, A287846, A287963, A287987. %K A287845 nonn %O A287845 0,6 %A A287845 _Alois P. Heinz_, Jun 01 2017